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Ontological queries are evaluated against a knowledge base consisting of an extensional database and an
ontology (i.e., a set of logical assertions and constraints that derive new intensional knowledge from the
extensional database), rather than directly on the extensional database. The evaluation and optimization of
such queries is an intriguing new problem for database research. In this article, we discuss two important
aspects of this problem: query rewriting and query optimization. Query rewriting consists of the compilation
of an ontological query into an equivalent first-order query against the underlying extensional database.
We present a novel query rewriting algorithm for rather general types of ontological constraints that is
well suited for practical implementations. In particular, we show how a conjunctive query against a knowl-
edge base, expressed using linear and sticky existential rules, that is, members of the recently introduced
Datalog± family of ontology languages, can be compiled into a union of conjunctive queries (UCQ) against
the underlying database. Ontological query optimization, in this context, attempts to improve this rewriting
process soas to produce possibly small and cost-effective UCQ rewritings for an input query.
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1. INTRODUCTION

1.1. Ontological Database Management Systems

The use of ontological reasoning in companies, governmental organizations, and other
enterprises has become widespread in recent years. An ontology is an explicit specifica-
tion of a conceptualization of an area of interest and consists of a formal representation
of knowledge as a set of concepts within a domain, as well as the relationships between
instances of these concepts. Moreover, ontologies have been adopted as high-level con-
ceptual descriptions of the data contained in data repositories that are sometimes
distributed and heterogeneous in the data models. Due to their high expressive power,
ontologies are also replacing more traditional conceptual models such as UML class
diagrams and Entity Relationship schemata.
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We are currently witnessing the marriage of ontological reasoning and database
technology, giving rise to a new type of database management systems, the so-called
ontological database management systems, equipped with advanced reasoning and
query processing mechanisms [Calvanese et al. 2007; Calı̀ et al. 2011]. More precisely,
an extensional database D is combined with an ontology � that is used to derive new
intensional knowledge from the extensional database. An input conjunctive query is not
just answered against the database as in the classical setting, but against the logical
theory (a.k.a. ontological database) D∪�—recall that conjunctive queries correspond to
the select-project-join fragment of relational algebra and form one of the most natural
and commonly used languages for querying relational databases [Abiteboul et al. 1995].
Therefore, the answer to a conjunctive query ∃Y ϕ(X, Y) with distinguished variables
X over the ontological database consists of all tuples t of constants such that, when we
substitute the variables X with t, ∃Yϕ(t, Y) evaluates to true in every model of D ∪ �,
that is, in every instance containing D and satisfying �.

This amalgamation of different technologies stems from the need for semantically
enhancing existing databases with ontological constraints. Indeed, database technol-
ogy providers have recognized this need and have recently started to build ontological
reasoning modules on top of their existing software with the aim of delivering ef-
fective database management solutions to their customers. For example, Oracle, Inc.
offers a system, called Oracle Database 11g, enhanced by modules performing onto-
logical reasoning tasks1. Also, Ontotext offers a family of semantic repositories, called
OWLIM2, and Semafora Systems develops an inference machine, called Ontobroker3,
for processing ontologies that support all of the World Wide Web Consortium (W3C)
recommendations. Enhancing databases with ontologies is also at the heart of several
research-based systems such as QuOnto [Acciarri et al. 2005] and Quest [Rodriguez-
Muro and Calvanese 2012].

1.2. Ontology Languages

Ontologies are modeled using formal languages called ontology languages. Description
Logics (DLs) [Baader et al. 2003] are a family of knowledge representation languages
widely used in ontological modeling. In fact, DLs model a domain of interest in terms
of concepts and roles that represent classes of individuals and binary relations on
classes of individuals, respectively. Interestingly, DLs provide the logical underpin-
ning for the Web Ontology Language (OWL) and its revision OWL 2, as standardized
by the W3C4. Unfortunately, in order to achieve favorable computational properties,
DLs are able only to describe knowledge for which the underlying relational struc-
ture is treelike. Moreover, they usually allow only unary and binary relations. The
overcoming of the aforesaid limitations through the definition of expressive rule-based
ontology languages has become in the last years a field of intense research in the
KR and database communities. In fact, traditional database constraints such as tuple-
generating dependencies (TGDs) (a.k.a. existential rules and Datalog± rules) of the form
∀X∀Y ϕ(X, Y) → ∃Z ψ(X, Z), where ϕ and ψ are conjunctions of atoms over a relational
schema, appeared to be a suitable formalism for ontological modeling and reasoning.
Examples of such languages can be found in Baget et al. [2011], Krötzsch and Rudolph
[2011], and Calı̀ et al. [2012a, 2012b].

A desirable property of an ontology language, apart from ensuring the decidability, is
to guarantee the tractability of conjunctive query answering w.r.t. the data complexity,

1http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html.
2http://www.ontotext.com/owlim.
3http://www.semafora-systems.com/en/products/ontobroker/.
4http://www.w3.org/TR/owl2-overview/.
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that is, the complexity calculated by considering only the database as part of the input.
Indeed, the data complexity of query answering is widely regarded as more meaning-
ful and relevant in practice than the combined complexity (calculated by considering
everything as part of the input), since the query and ontology are typically of a size
that can be productively assumed fixed and usually are much smaller than a typical
relational database. Several lightweight DLs have been proposed that guarantee that
conjunctive query answering is feasible in polynomial time w.r.t. the data complexity.
Such DLs are EL [Baader 2003] and the members of the DL-Lite family [Calvanese
et al. 2007; Poggi et al. 2008], namely DL-LiteR, DL-LiteF , and DL-LiteA. These lan-
guages can be seen as tractable sublanguages of OWL; in fact, the language DL-LiteR
forms the OWL 2 QL5 profile of OWL 2. It was convincingly argued that, despite their
simplicity, EL and the DL-Lite formalisms are powerful enough for modeling an over-
whelming number of real-life scenarios. More recently, several classes of TGDs have
been identified that guarantee the same low data complexity for conjunctive query an-
swering. For example, the class of guarded TGDs (inspired by the guarded fragment of
first-order logic [Andréka et al. 1998]) that is noticeably more general than EL and the
members of the DL-Lite family has been investigated in Calı̀ et al. [2008]. Extensions
of guarded TGDs can be found in Baget et al. [2011] and Krötzsch and Rudolph [2011].
Moreover, the classes of linear and sticky TGDs, both encompassing the DL-Lite family,
have been proposed in Calı̀ et al. [2012a, 2012b].

1.3. First-Order Rewritability

Polynomial-time tractability is often considered not good enough for efficient query
processing. Ideally, one would like to achieve the same complexity as for processing
first-order queries, or, equivalently, (nonrecursive) SQL queries. An ontology language
L guarantees the first-order rewritability of conjunctive query answering if, for every
conjunctive query q and ontology � expressed in L, a positive first-order query q�

called perfect rewriting6 can be constructed such that, given a database D, q� evaluated
over D yields exactly the same result as q evaluated against the ontological database
D ∪ � [Calvanese et al. 2007]. Since answering first-order queries is in AC0 in data
complexity [Vardi 1995], it immediately follows that query answering under ontology
languages that guarantee the first-order rewritability of the problem is also in AC0 in
data complexity.

First-order rewritability is a most desirable property since it ensures that the query
answering process can be largely decoupled from data access. In fact, as depicted in
Figure 1, to answer a query q over an ontological database D ∪ �, a separate software
can compile q into q� , then translate q� into a standard SQL query q�, and finally
submit it to the underlying relational database management system holding D, where
it is evaluated and optimized in the usual way.

Example 1.1. Consider the set � consisting of the TGD:

∀X∀Y project(X), inArea(X, Y ) → ∃ZhasCollaborator(Z, Y, X),

asserting that each project has an external collaborator specialized in the area of the
project. We can ask for projects in the area of databases for which there are external
collaborators by posing the CQ ∃AhasCollaborator(A, db, B). Intuitively, due to the
preceding TGD, not only do we have to query hasCollaborator, but we also need to look
for projects in the area of databases, as such projects will necessarily have an external

5http://www.w3.org/TR/owl2-profiles/.
6In general, there exist more than one perfect rewritings. However, for query answering, all the possible
rewritings are equivalent and thus we can refer to the perfect rewriting.
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Fig. 1. Answering queries via rewriting.

Fig. 2. The SQL query of Example 1.1.

collaborator. The perfect rewriting q� will thus be the union of CQs:

(∃AhasCollaborator(A, db, B)) ∨ (project(B) ∧ inArea(B, db)).

Assuming the schema project(p id), inArea(p id, area), hasCollaborator(c id, area, p id),
it is clear that q� can be written in SQL as shown in Figure 2.

Interestingly, the members of the DL-Lite family of DLs, as well as the classes of
linear and sticky TGDs, guarantee the first-order rewritability of conjunctive query
answering. Actually, the previously named languages guarantee a stronger property
than first-order rewritability: given a conjunctive query q and an ontology � expressed
in one of the aforesaid formalisms, the perfect rewriting q� can be expressed as a union
of conjunctive queries, that is, we do not need the full expressive power of positive
first-order queries. As we explain shortly, the main problem that we address in this
article is precisely the question of how to compute q� correctly and efficiently when the
input ontology � is expressed as a set of linear or sticky TGDs.

1.4. Aims and Objectives

The advantage of first-order rewritability is obvious, that is, conjunctive query answer-
ing can be deferred to a standard query language such as SQL, in turn allowing to
exploit mature and efficient existing database technology that is accessible via the un-
derlying database management system. However, there is a drawback in this approach
in that, if the algorithm that constructs the perfect rewriting inflates the query exces-
sively and creates from a reasonably sized ontological query a massive exponentially
sized SQL query, then even the best database management system may be of little
use. This problem gave rise to flourishing research activity in the DL community. A
remarkable number of rewriting algorithms, with the aim of compiling a conjunctive
query and a DL-Lite ontology into a “small” union of conjunctive queries, have been
proposed in the last five years (see, e.g., Calvanese et al. [2007], Pérez-Urbina et al.
[2010], Chortaras et al. [2011], Kikot et al. [2012a], and Venetis et al. [2013]); see
Section 2.
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Surprisingly, before the conference version of the present article [Gottlob et al. 2011],
no practical algorithm, able to efficiently compile a conjunctive query and an ontology
modeled using an expressive TGD-based language into a union of conjunctive queries,
was available. It is the precise aim of this work to fill this gap for linear and sticky
TGDs. Both linearity and stickiness are well-accepted paradigms.

—A TGD is called linear if it has only one body atom [Calı̀ et al. 2012a]; notice that the
body is the left-hand side of the implication. Despite its simplicity, linearity forms a
robust language with several applications. Linear TGDs are strictly more expressive
than the description logic DL-LiteR [Calvanese et al. 2007] that, as already said,
forms the OWL 2 QL profile of W3C’s standard ontology language for modeling
Semantic Web ontologies. Importantly, linear TGDs, in contrast to DL-LiteR, can be
used with relational database schemas of arbitrary arity. The usefulness of schemas
of higher arity (not just unary and binary relations) has been recognized by the DL
community; as evidence we mention DLR-Lite [Calvanese et al. 2013a], a recent
generalization of DL-Lite to arbitrary arity, which is also captured by linear TGDs.
Also, linear TGDs generalize inclusion dependencies, a well-known class of relational
constraints; in fact, inclusion dependencies can be equivalently written as TGDs with
just one body atom and one head atom without repeated variables. Moreover, linear
TGDs are powerful enough to express conditional inclusion dependencies that extend
traditional inclusion dependencies by enforcing bindings of semantically related data
values. They are useful in data cleaning and contextual schema mapping [Bohannon
et al. 2006; Bravo et al. 2007]. In fact, conditional inclusion dependencies can be
written as linear TGDs with constant values in the body. Furthermore, linear TGDs
generalize local-as-view (LAV) TGDs that are employed in data exchange and data
integration to define schema mappings, that is, specifications that describe how
data for a source schema can be transformed into data for a target schema; see, for
example, ten Cate and Kolaitis [2009]. Finally, linear TGDs can be used in schema
evolution and in particular for expressing the decompose operator, with the aim of
splitting a table into smaller tables [Curino et al. 2013].

—Stickiness [Calı̀ et al. 2012b] allows joins to appear in rule bodies not express-
ible via linear TGDs, let alone via DL(R)-Lite assertions; more details are given in
Section 3. Interestingly, sticky TGDs are able to capture well-known data modeling
constructs such as (conditional) inclusion and multivalued dependencies. Further-
more, sticky TGDs, in contrast to linear TGDs (and most of the existing DLs), allow
to describe knowledge for which the underlying relational structure is not treelike.
This is mainly due to the fact that sticky TGDs are expressive enough for encoding
the cartesian product of two tables. For instance, the set of sticky TGDs consisting
of ∀X∀Y pi(X, Y ) → ∃Z pi(Y, Z), si(Z), for each i ∈ {1, 2}, and ∀X∀Y s1(X), s2(Y ) →
r(X, Y ), computes the cartesian product of s1 and s2 that forms an infinite clique,
thus the underlying relational structure has infinite treewidth. As already observed
by the DL community, there are some natural ontological statements, such as “all ele-
phants are bigger than all mice” [Rudolph et al. 2008], that are expressible only via
cartesian product assertions. Notice that the preceding statement can be captured
by the sticky TGD ∀X∀Y elephant(X), mouse(Y ) → biggerThan(X, Y ). Finally, sticky
TGDs can also be used for schema evolution purposes and in particular for express-
ing the merge operator, with the aim of putting together two or more tables [Curino
et al. 2013].

Apart from designing a practical rewriting algorithm for linear and sticky TGDs, we
would also like to investigate the possibility of improving the computation of the perfect
rewriting on multicore architectures commonly available in modern database servers.
In the long term, we envision relational database systems able to handle ontological
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constraints natively, as done today for traditional data dependencies such as primary
and foreign keys. A key difference is that ontological constraints are not supposed to
be enforced by the DBMS as classical integrity constraints, but rather to be taken into
consideration during the evaluation of a query. This article is a significant step towards
this direction.

1.5. The Existing Approach

Although it is known that both linear and sticky TGDs guarantee the first-order
rewritability of conjunctive query answering, the existing algorithms are of theoretical
nature and it is generally accepted that there is no obvious way how they will lead
to better practical rewriting algorithms. The key property of linear and sticky TGDs
that implies the first-order rewritability of conjunctive query answering is the so-
called bounded derivation-depth property (BDDP) [Calı̀ et al. 2012a]. As we shall see in
Section 3, to compute the answer to a conjunctive query q over an ontological database
D ∪ �, where � is a linear or sticky ontology, it suffices to evaluate q over a special
model of D∪� that can be homomorphically embedded into every other model of D∪�.
Such a model, called universal model (a.k.a. canonical model), always exists and can
be constructed by applying the chase procedure, a powerful tool for reasoning about
data dependencies. Intuitively, the chase adds new atoms to the extensional database
D, possibly involving null values that act as witnesses for the existentially quantified
variables until the final result, denoted chase(D, �), satisfies �. However, chase(D, �)
is in general infinite and thus not explicitly computable. The BDDP implies that it
suffices to evaluate q over an initial finite part of chase(D, �) that depends only on
q and �. Roughly, chase(D, �) can be decomposed into levels, where database atoms
have level zero while an inferred atom has level k + 1 if it is obtained due to atoms
with maximum level k; we refer to the part of the chase up to level k as chasek(D, �).
Thus, the BDDP implies that there exists k � 0 such that, for every database D, the
answer to q over D ∪ � coincides with the answer to q over chasek(D, �). An algorithm
for computing the prefect rewriting q� by exploiting the preceding property has been
presented in Calı̀ et al. [2012a]. Roughly, one can enumerate all the possible database
ancestors D1, . . . , Dn of the image of the given query and then, starting from each Di,
construct chasek(D, �), where k is the depth provided by the BDDP, that will then give
rise to a query in the final rewriting. It is evident that such a procedure is computa-
tionally expensive and also that the obtained queries are usually very large and cannot
be effectively materialized. Notice that the goal of Calı̀ et al. [2012a] was to establish
that classes of TGDs which enjoy the BDDP guarantee the first-order rewritability of
conjunctive query answering, without taking into account implementation issues. It is
apparent that we had to look for new rewriting procedures that substantially deviate
from the one described earlier.

1.6. Summary of Contributions

Our contributions can be summarized as follows.

(1) We propose a novel query rewriting algorithm, called XRewrite, that is based on
backward chaining resolution. In fact, XRewrite uses the TGDs as rewriting rules,
with the aim of simulating, independently from the extensional database, the chase
derivations responsible for the generation of the image of the input query. Such an
algorithm is better for practical applications than the one described before since,
during the rewriting process, we only explore the part of the chase that is needed
in order to entail the query, namely the proof of the query, thus we avoid the
generation of a nonnegligible number of useless atoms. Interestingly, XRewrite
is sound and complete even if we consider an arbitrary set of TGDs without any
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syntactic restrictions; however, in this general case the termination of the algorithm
is not guaranteed. We show that, if the input set of TGDs is linear or sticky, then
XRewrite terminates, and thus it forms a practical query rewriting algorithm for
linear and sticky TGDs; recall that the design of such an algorithm is the main
research challenge of this work.

(2) We present a parallel version of XRewrite, called XRewriteParallel, with the aim of
reducing the overall execution time for computing the final rewriting by exploiting
multicore architectures. To the best of our knowledge, this is the first attempt to
design a parallel query rewriting algorithm. The key idea is to decompose the input
query q into smaller queries q1, . . . , qm, where m � 1, in such a way that each qi
can be rewritten independently by concurrent rewriters into a query Qqi and then
merge the queries Qq1 , . . . , Qqm in order to obtain the final rewriting.

(3) We propose a technique, called query elimination, aiming at optimizing the final
rewritten query under linear TGDs. Query elimination, which is an additional step
during the execution of XRewrite, reduces: (i) the size of the final rewriting, (ii) the
number of atoms in each query of the rewriting, and (iii) the number of joins to be
executed. The key idea underlying query elimination is that the linearity of TGDs
allows to effectively identify atoms in the body of a query that are logically implied
(w.r.t. a given set of TGDs) by other atoms in the same query.

(4) After implementing our algorithm, we have analyzed its behavior and identified
certain operations, such as the computation of the most general unifier for a set of
atoms, that might benefit from caching. We also perform an extensive analysis on
the impact of our optimizations on the rewriting process and show that all of them
reduce the number of redundant queries in the final rewriting. We finally compare
our system with ALASKA (i.e., the reference implementation of König et al. [2012]),
the only known system supporting ontological query rewriting under arbitrary
TGDs. We observe that both systems return minimal rewritings on the given test
cases. However, query elimination allows us to perform a better exploration of
the rewriting search space on most of the given test cases. Interestingly, even for
those cases where ALASKA performs a better exploration of the search space, our
algorithm achieves better performance due to the caching mechanism. Notably,
on certain test cases, the parallelization of the rewriting provides a fundamental
contribution towards making the rewriting manageable as the number of explored
and generated queries is drastically reduced.

Roadmap. After a review of previous work on query rewriting in Section 2 and some
technical definitions and preliminaries in Section 3, we proceed with our new results.
In Section 4, we present the rewriting algorithm XRewrite and in Section 5 its parallel
version. In Section 6, we present the query elimination technique. Implementation
issues are discussed in Section 7, while the experimental evaluation is presented in
Section 8. We conclude in Section 9 with a brief outlook on further research.

2. RELATED WORK ON QUERY REWRITING

An early query rewriting algorithm for the DL-Lite family of DLs, introduced in
Calvanese et al. [2007] and implemented in the QuOnto system, reformulates the
given query into a union of conjunctive queries. The size of the reformulated query
is unnecessarily large. This is mainly due to the fact that the factorization step (that
is needed, as we shall see, to guarantee completeness) is applied in a “blind” way,
even if not needed, and as a result many superfluous queries are generated. In Pérez-
Urbina et al. [2010] an alternative resolution-based rewriting algorithm for DL-LiteR
is proposed and implemented in the Requiem system that addresses the issue of the
useless factorizations (and therefore of the redundant queries generated due to this
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weakness) by directly handling existential quantification through proper functional
terms; notice that this algorithm works also for more expressive DLs that do not guar-
antee first-order rewritability of query answering (in this case, the computed rewriting
is a recursive Datalog query). A query rewriting algorithm for DL-LiteR, called Rapid,
that is more efficient than the one in Pérez-Urbina et al. [2010], is presented in Chor-
taras et al. [2011]. The efficiency of Rapid is based on the selective and stratified
application of resolution rules; roughly, it takes advantage of the query structure and
applies a restricted sequence of resolutions that may lead to useful and redundant-free
rewritings. An alternative query rewriting technique for DL-LiteR is presented in Kikot
et al. [2012a]. Although the obtained rewritings are, in general, not correct and of ex-
ponential size, in most practical cases the rewritings are correct and of polynomial
size. In Venetis et al. [2013], the problem of computing query rewritings for DL-LiteR
in an incremental way is investigated. More precisely, a technique that computes an
extended query by “extending” a previously computed rewriting of the initial query
(thus avoiding recomputation) is proposed.

The algorithms mentioned before leverage specificities of DLs, such as the limit to
unary and binary predicates only and the absence of variable permutations in the ax-
ioms. Therefore, they cannot be easily extended to more general TGD-based languages;
in fact, DL-based systems often resort to case-by-case analysis on the syntactic form
of the DL axioms. Following a more general approach, the works Gottlob et al. [2011]
and König et al. [2012, 2013] presented a backward-chaining rewriting algorithm able
to deal with arbitrary TGDs, providing that the language under consideration satis-
fies suitable syntactic restrictions that guarantee the termination of the algorithm.
In other works that follow a different approach, instead of computing a union of con-
junctive queries, the rewritings are expressed in some other query language such as
nonrecursive Datalog. These can be found in the literature [Rosati and Almatelli 2010;
Orsi and Pieris 2011; Gottlob and Schwentick 2012; Kikot et al. 2012b; Thomazo 2013;
Gottlob et al. 2014].

A related field is that of database query reformulation in presence of views and con-
straints [Deutsch et al. 1999; Halevy 2001; Benedikt et al. 2014]. Given a conjunctive
query q and a set of constraints �, the goal is to find all the minimal equivalent refor-
mulations of q w.r.t. �. The most widely used approach in this respect is the chase-and-
backchase algorithm [Deutsch et al. 1999] implemented in the MARS system [Deutsch
and Tannen 2003], discussed in more detail in Section 6.

3. DEFINITIONS AND BACKGROUND

3.1. Technical Definitions

We present background material necessary for this article. We recall some basics on
relational databases, relational queries, tuple-generating dependencies, and the chase
procedure relative to such dependencies. For further details on the previous notions we
refer the reader to Abiteboul et al. [1995].

Alphabets. We define the following pairwise disjoint (countably infinite) sets of sym-
bols: a set � of constants (constituting the “normal” domain of a database), a set �N of
labeled nulls (used as placeholders for unknown values and thus that can also be seen
as globally existentially quantified variables), and a set �V of (regular) variables (used
in queries and dependencies). Different constants represent different values (unique
name assumption), while different nulls may represent the same value. A fixed lexi-
cographic order is assumed on � ∪ �N such that every value in �N follows all those
in �. We denote by X sequences (or sets, with a slight abuse of notation) of variables
X1, . . . , Xk, with k � 1. Throughout, let [n] = {1, . . . , n}, for any integer n � 1.
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Relational Model. A relational schema R (or simply schema) is a set of relational
symbols (or predicates), each with its associated arity. We write r/n to denote that the
predicate r has arity n. By arity(R) we refer to the maximum arity over all predicates
of R. A position r[i] (in R) is identified by a predicate r ∈ R and its i-th argument (or
attribute). A term t is a constant, null, or variable. An atomic formula (or simply atom)
has the form r(t1, . . . , tn), where r/n is a relation and t1, . . . , tn are terms. For an atom
a, we denote by terms(a) and var(a) the set of its terms and the set of its variables,
respectively. These notations naturally extend to sets of atoms. Conjunctions of atoms
are often identified with the sets of their atoms. An instance I for a schema R is a
(possibly infinite) set of atoms of the form r(t), where r/n ∈ R and t ∈ (� ∪ �N)n. A
database D is a finite instance such that terms(D) ⊂ �.

Substitutions. A substitution from a set of symbols S to a set of symbols S′ is a
function h : S → S′ defined as follows: ∅ is a substitution (empty substitution) and,
if h is a substitution, then h ∪ {t → t′} is a substitution, where t ∈ S and t′ ∈ S′; if
t → t′ ∈ h, then we write h(t) = t′. An assertion of the form t → t′ is called mapping.
The restriction of h to T ⊆ S, denoted h|T , is the substitution h′ = {t → h(t) | t ∈
T }. A homomorphism from a set of atoms A to a set of atoms A′ is a substitution
h : � ∪ �N ∪ �V → � ∪ �N ∪ �V such that if t ∈ �, then h(t) = t and if r(t1, . . . , tn) ∈ A,
then h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) ∈ A′. A set of atoms A = {a1, . . . , an}, where n � 2,
unifies if there exists a substitution γ , called unifier for A, such that, γ (a1) = · · · = γ (an).
A most general unifier (MGU) for A is a unifier for A, denoted as γA, such that, for each
other unifier γ for A, there exists an substitution γ ′ such that γ = γ ′ ◦ γA. Notice that
if a set of atoms unify, then there exists an MGU. Furthermore, the MGU for a set of
atoms is unique (modulo variable renaming).

Datalog. A Datalog rule ρ is an expression of the form a0 ← a1, . . . , an, for n � 0,
where ai is an atom containing constants of � and variables of �V and where every
variable occurring in a0 must appear in at least one of the atoms a1, . . . , an; the latter is
known as the safety condition. The atom a0 is called the head of ρ, denoted as head(ρ),
while the set of atoms {a1, . . . , an} is called the body of ρ, denoted as body(ρ). A Datalog
program 	 over a schema R is a set of Datalog rules such that, for each ρ ∈ 	, the
predicate of head(ρ) does not occur in R. The program 	 is nonrecursive if there is some
ordering ρ1, . . . , ρn of the rules of 	 so that the predicate in the head of ρi does not occur
in the body of a rule ρ j , for each j � i. The extensional database (EDB) predicates are
those that do not occur in the head of any rule of 	; all the other predicates are called
intensional database (IDB) predicates. A model of 	 is an instance I for R such that, for
every Datalog rule of the form a0 ← a1, . . . , an appearing in 	, I satisfies the first-order
formula ∀X(a1 ∧ . . .∧an → a0), where X are the variables occurring in ρ, in other words,
whenever there exists a homomorphism h such that h({a1, . . . , an}) ⊆ I, h(a0) ∈ I. The
semantics of 	 w.r.t. a database D for R, denoted as 	(D), is the minimum model of 	
containing D (which is unique and always exists).

Queries. An n-ary Datalog query Q over a schema R is a pair 〈	, p〉, where 	 is a
Datalog program over R and p is an n-ary (output) predicate occuring in the head of at
least one rule of 	. Q is a nonrecursive Datalog query if 	 is nonrecursive. Q is a union
of conjunctive queries (UCQs) if 	 is nonrecursive, p is the only IDB predicate in 	,
and, for each rule ρ ∈ 	, p does not occur in body(ρ). Finally, Q is a conjunctive query
(CQ) if it is a union of CQs and 	 contains exactly one rule. The answer to an n-ary
Datalog query Q = 〈	, p〉 over a database D is the set {t ∈ �n | p(t) ∈ 	(D)}, denoted
Q(D). Since the output predicate of a (U)CQ is clear from the syntax of the query, in
the rest of the article, for brevity, a CQ is seen as a Datalog rule while a UCQ is seen
as a Datalog program (instead of a pair consisting of a program and a predicate). The
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variables occurring in the head of a CQ are its distinguished variables. The answer to
a CQ q7 over a (possibly infinite) instance I can be equivalently defined as the set of all
tuples of constants t for which there exists a homomorphism h such that h(body(q)) ⊆ I
and h(X) = t, where X are the distinguished variables of q. The answer to a UCQ
Q over I can be equivalently defined as the set of tuples {t | where there exists q ∈
Q such that t ∈ q(I)}.

Tuple-Generating Dependencies. A tuple-generating dependency (TGD) σ over a
schema R is a first-order formula ∀X∀Y ϕ(X, Y) → ∃Z ψ(X, Z), where X ∪ Y ∪ Z ⊂ �V
and where ϕ,ψ are conjunctions of atoms over R (possibly with constants). Formula ϕ
is the body of σ , denoted body(σ ), while ψ is the head of σ , denoted head(σ ). Hence-
forth, for brevity, we will omit the universal quantifiers in front of TGDs and use the
comma (instead of ∧) for conjoining atoms. Such σ is satisfied by an instance I for R,
written I |= σ , if the following holds: whenever there exists a homomorphism h such
that h(ϕ(X, Y)) ⊆ I, then there exists a homomorphism h′ ⊇ h|X, called the extension of
h|X, such that h′(ψ(X, Z)) ⊆ I. An instance I satisfies a set � of TGDs, denoted I |= �,
if I |= σ for each σ ∈ �. A set � of TGDs is in normal form if each of its TGDs has a
single head atom containing only one occurrence of an existentially quantified variable.
As shown, for instance, in Calı̀ et al. [2012b], every set � of TGDs over a schema R
can be transformed in logarithmic space into a set N(�) over a schema RN(�) in normal
form of size at most quadratic in |�|, such that � and N(�) are equivalent w.r.t. query
answering; for more details see electronic Appendix A.1.

Conjunctive Query Answering under TGDs. Given a database D for a schema R and
a set � of TGDs over R, the answers we consider are those that are true in all models
of D w.r.t. �. Formally, the models of D w.r.t. �, denoted as mods(D, �), is the set of
all instances I such that I ⊇ D and I |= �. The answer to an n-ary CQ q w.r.t. D and
�, denoted as ans(q, D, �), is the set of n-tuples {t | t ∈ q(I), for each I ∈ mods(D, �)};
the answer to an n-ary UCQ is defined analogously. Notice that the associated decision
problem, that asks whether a tuple of constants belongs to the answer of a CQ w.r.t. a
database and a set of TGDs, is undecidable under arbitrary TGDs [Beeri and Vardi
1981]; in fact, it remains undecidable even when the schema and the set of TGDs are
fixed [Calı̀ et al. 2008], or even when the set of TGDs is a singleton [Baget et al. 2011].
Concrete classes of TGDs that are of special interest for the current work and also
guarantee the decidability of query answering are presented in Section 3.3.

The TGD Chase Procedure. The chase procedure (or simply chase) is a fundamental
algorithmic tool introduced for checking implication of dependencies [Maier et al.
1979], and later for checking query containment [Johnson and Klug 1984]. Informally,
the chase is a process of repairing a database w.r.t. a set of dependencies so that the
resulting instance satisfies the dependencies. By abuse of terminology, we shall use
the term “chase” interchangeably for both the procedure and its result. The chase
works on an instance through the so-called TGD chase rule.

TGD chase rule. Consider an instance I for a schema R, as well as a TGD σ :
ϕ(X, Y) → ∃Z ψ(X, Z) over R. We say that σ is applicable to I if there exists a
homomorphism h such that h(ϕ(X, Y)) ⊆ I. The result of applying σ to I with h is
I′ = I ∪ h′(ψ(X, Z)) and we write I〈σ, h〉I′, where h′ is an extension of h|X such that
h′(Z) is a “fresh” labeled null of �N not occurring in I, and following lexicographically
all those in I, for each Z ∈ Z. In fact, I〈σ, h〉I′ defines a single TGD chase step.

7Henceforth, for clarity, we usually use lower-case letters for CQs and upper-case letters for UCQs.
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Let us now give the formal definition of the chase of a database w.r.t. a set of TGDs.
A chase sequence of a database D w.r.t. a set � of TGDs is a sequence of chase
steps Ii〈σi, hi〉Ii+1, where i � 0, I0 = D and σi ∈ �. The chase of D w.r.t. �, denoted
chase(D, �), is defined as follows.

—A finite chase of D w.r.t. � is a finite chase sequence Ii〈σi, hi〉Ii+1, where 0 � i < m
and there is no σ ∈ � applicable to Im; let chase(D, �) = Im.

—An infinite chase sequence Ii〈σi, hi〉Ii+1, where i � 0, is fair if, whenever a TGD σ :
ϕ(X, Y) → ∃Z ψ(X, Z) is applicable to Ii with homomorphism h, then there exists an
extension h′ of h|X and k > i such that h′(head(σ )) ⊆ Ik. An infinite chase of D w.r.t. �
is a fair infinite chase sequence Ii〈σi, hi〉Ii+1, where i � 0; let chase(D, �) = ⋃∞

i=0 Ii.

Let chase[k](D, �) be the instance constructed after k � 0 applications of the TGD chase
step. An example of the chase procedure can be found in electronic Appendix A.1. It is
well known that the chase of D w.r.t. � is a universal model of D w.r.t. �, that is, for each
I ∈ mods(D, �), there exists a homomorphism hI such that hI(chase(D, �)) ⊆ I [Fagin
et al. 2005; Deutsch et al. 2008]. Using this universality property, it can be shown
that the chase is a formal algorithmic tool for query answering under TGDs. More
precisely, the answer to a CQ q w.r.t. a database D and a set of TGDs � coincides with
the answer to q over the chase of D w.r.t. �, namely ans(q, D, �) = q(chase(D, �)).

The TGD chase rule given before is known as oblivious since it “forgets” to check
whether the TGD under consideration is already satisfied, that is, it adds atoms to
the given instance even if it is not necessary. The version of the TGD chase rule that
applies stricter criteria to the applicability of TGDs, with the aim of adding atoms to
the given instance only if necessary, is called restricted. The universality property was
originally shown for the restricted version of the chase [Fagin et al. 2005; Deutsch
et al. 2008], which is considered as the standard one. However, as explicitly stated
in Calı̀ et al. [2013], the universality property holds also for the oblivious chase; this
was established by showing the existence of a homomorphism from the oblivious to the
restricted chase. Thus, for our purposes, we can safely consider the oblivious chase.
This is done for technical clarity and simplicity. As discussed in Johnson and Klug
[1984], even in the simple case of inclusion dependencies, things become technically
more complicated if the restricted chase is employed, since the applicability of a TGD
depends on the presence of other atoms previously constructed by the chase.

3.2. Query Answering via Rewriting

A fundamental property that a class of TGDs should enjoy is to guarantee the decidabil-
ity of (the decision version) of conjunctive query answering; recall that in general this
problem is undecidable. However, as already discussed in Section 1, to be able to work
with very large datasets, decidability of query answering is not enough. We need also
high tractability in data complexity, that is, when both the query and the set of TGDs
are fixed and possibly feasible by the use of relational query processors. First-order
rewritability, introduced in the context of description logics [Calvanese et al. 2007],
guarantees the previous desirable properties. Roughly speaking, given a CQ and a set
of TGDs, a (finite) first-order query can be constructed, called perfect rewriting, that
takes into account the semantic consequences of the TGDs. Then, the answer to the in-
put query w.r.t. a database D and the set of TGDs is obtained by evaluating the perfect
rewriting directly over D. Formally, the problem of conjunctive query answering under
a set of TGDs � is first-order rewritable if, for every CQ q, a (finite) positive first-order
query q� can be constructed such that, for every database D, ans(q, D, �) = q�(D). Un-
fortunately, the problem of deciding whether a set of TGDs guarantees the first-order
rewritability of CQ answering is undecidable; see electronic Appendix A.2.
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Fig. 3. Sticky property and propagation step.

It is well known that the evaluation of first-order queries is in the highly tractable
class AC0 in data complexity [Vardi 1995]. Recall that this is the complexity class of
recognizing words in languages defined by constant-depth Boolean circuits with (un-
limited fanin) AND and OR gates (see, e.g., Papadimitriou [1994]). Consequently, CQ
answering under sets of TGDs that guarantee the first-order rewritability of the prob-
lem is in AC0 in data complexity. Given that every first-order query can be equivalently
written in (nonrecursive) SQL, in practical terms this means that CQ answering can
be deferred to a standard query language such as SQL. This allows us to exploit all the
optimization capabilities of the underlying RDBMS.

3.3. Concrete Classes of TGDs

Since the problem of identifying first-order rewritability is undecidable, it is not possi-
ble to syntactically characterize the fragment of TGDs that guarantees the first-order
rewritability of CQ answering. However, several sufficient syntactic conditions have
been proposed, the two main ones being linearity and stickiness.

Linearity. Linear TGDs have been proposed in Calı̀ et al. [2012a]. A TGD σ is called
linear if σ has only one body atom. The class of linear TGDs, namely the set of all
possible sets of linear TGDs is denoted LINEAR. Despite its simplicity, as already
discussed in Section 1.4, LINEAR is quite natural with several applications. Linear
TGDs guarantee the first-order rewritability of CQ answering [Calı̀ et al. 2012a]; this
is also implicit in Baget et al. [2011], where atomic hypothesis rules that coincide with
linear TGDs are investigated. This result was established by showing that LINEAR
enjoys the BDDP. However, as already remarked in Section 1, the techniques based on
the BDDP do not lead to practical query rewriting algorithms.

Stickiness. The class of sticky sets of TGDs, denoted STICKY, has been proposed
in Calı̀ et al. [2012b] with the aim of identifying an expressive class that allows for
meaningful joins in rule bodies. The key idea underlying stickiness is to ensure that,
during the chase, terms associated with body variables that appear more than once
(i.e., join variables) are always propagated (or “stick”) to the inferred atoms. This is
illustrated in Figure 3(a).

The formal definition of sticky sets of TGDs hinges on a variable marking procedure
called SMarking. This procedure accepts as input a set � of TGDs and returns the
same set after marking some of its body variables. For notational convenience, given a
TGD σ , an atom a ∈ head(σ ), and a universally quantified variable V of σ , pos(σ, a, V )
is the set of positions in a at which V occurs. SMarking(�) is constructed as follows.
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First, we apply on � the initial marking step: for each σ ∈ � and for each variable
V ∈ var(body(σ )), if there exists an atom a ∈ head(σ ) such that V �∈ var(a), then each
occurrence of V in body(σ ) is marked. SMarking(�) is obtained by applying exhaustively
(i.e., until a fixpoint is reached) on � the propagation step: for each pair 〈σ, σ ′〉 ∈ � ×�,
for each atom a ∈ head(σ ) and for each universally quantified variable V ∈ var(a), if
there exists an atom b ∈ body(σ ′) in which a marked variable occurs at each position
of pos(σ, a, V ), then each occurrence of V in body(σ ) is marked.

Example 3.1. Consider the set � consisting of

σ1 : r(X, Y ) → ∃Zr(Y, Z) σ3 : s(X), s(Y ) → p(X, Y )
σ2 : r(X, Y ) → s(X) σ4 : r(X, Y ), r(Z, X) → s(X).

By applying the initial marking step, the body variables of � are marked with a cap
(i.e., V̂ ) and, due to the propagation step, are marked with a double-cap as follows:

σ1 : r(X̂,
ˆ̂Y ) → ∃Zr(Y, Z) σ3 : s(X), s(Y ) → p(X, Y )

σ2 : r(X, Ŷ ) → s(X) σ4 : r(X, Ŷ ), r(Ẑ, X) → s(X).

Figure 3(b) depicts the two ways of propagating the marking to the variable Y of σ1.

A set � of TGDs is called sticky if, for every σ ∈ SMarking(�), each marked variable
appears only once. Stickiness guarantees the first-order rewritability of CQ answer-
ing [Calı̀ et al. 2012a]. As for linear TGDs, this was established by showing that the
BDDP holds and hence all the drawbacks of this approach are inherited.

Normal Form. Notice that the normalization procedure for TGDs, presented in elec-
tronic Appendix A.1, preserves linearity and stickiness. In other words, given a linear
(respectively, sticky) set � of TGDs, the set N(�) is linear (respectively, sticky). Thus,
in the rest of the article we assume without loss of generality that TGDs have only
one head atom with at most one existentially quantified variable that occurs once. This
assumption will allow us to simplify our later technical definitions and proofs. Given
a TGD σ , we refer to the position of the (single) existentially quantified variable by
π∃(σ ); if there is no existentially quantified variable, then π∃(σ ) = ε.

4. UCQ REWRITING

In this section, we tackle the problem of CQ answering under linear and sticky sets of
TGDs. Our goal is to design a rewriting algorithm well suited for practical applications.
In particular, we present a backward-chaining rewriting algorithm that constructs a
union of conjunctive queries. Let us say that our techniques apply immediately even
if we additionally consider a limited form of functional dependencies and negative
constraints of the form ∀X ϕ(X) → ⊥, where ϕ is a conjunction of atoms. Notice that
these modeling features are vital for ontological reasoning purposes. Due to space
reasons, we omit the details and refer the reader to electronic Appendix B.1.

4.1. An Informal Description

Given a CQ q and a set � of TGDs, the actual computation of the rewriting is done
by exhaustively applying a backward resolution-based step, called rewriting step, that
uses the rules of � as rewriting rules whose direction is right-to-left. More precisely, a
rewriting step is applied on a CQ, starting from the given query q, and gives rise to a
new CQ that will be part of the final rewriting. Intuitively, a rewriting step simulates,
in the reverse direction (hence the term “backward”), an application of a TGD during
the construction of the chase. In other words, by applying the rewriting step, we bypass
an application of a TGD during the chase and the obtained query is one level closer to
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the database level. This is done until there are no other TGD chase steps to bypass,
meaning that we reached the database level, as required.

Example 4.1 (Rewriting Step). Consider the TGD and CQ given in Example 1.1 (are
also given here):

σ : project(X), inArea(X, Y ) → ∃ZhasCollaborator(Z, Y, X),
q : p(B) ← hasCollaborator(A, db, B).

Observe that head(σ ) and body(q) unify and that γ = {X → B, Y → db, Z → A} is
their MGU. This intuitively means that an atom of the form hasCollaborator(t1, db, t2),
where t1 and t2 are terms, to which body(q) can be homomorphically mapped, may be
obtained during the construction of the chase by applying σ . Such a TGD chase step can
be simulated (or bypassed) by applying the rewriting step on q using σ . This consists of
replacing body(q)8 with body(σ ) and then applying γ on the obtained query. The result
of such a rewriting step is the CQ

q′ : p(B) ← project(B), inArea(B, db),

and the final rewriting of q w.r.t. {σ } is the UCQ {q, q′}.
The fact that a set S ⊆ body(q) unifies with head(σ ) indicates that an atom a, to which

S can be homomorphically mapped, may be obtained during the chase by applying σ .
However, this is not always true and may lead to erroneous rewriting steps that in turn
will generate unsound rewritings. Let us illustrate the two cases via a simple example
where the blind application of the rewriting step, without checking whether further
conditions are satisfied, leads to unsound rewritings.

Example 4.2 (Unsound Rewritings). Consider the same TGD σ as in Example 4.1
and the CQ

q1 : p(B) ← hasCollaborator(c, db, B),

where c ∈ �. Since head(σ ) and body(q1) unify, with γ = {X → B, Y → db, Z → c} being
their MGU, we proceed with the rewriting step. This will result in the CQ:

q′ : p(B) ← project(B), inArea(B, db).

Consider now the database D = {project(a), inArea(a, db)}. The CQ q′ maps to D and we
conclude that 〈a〉 ∈ q′(D). However, the original query q1 does not map to chase(D, {σ }),
since there is no atom of the form hasCollaborator(c, db, t) in chase(D, {σ }) and thus
ans(q1, D, {σ }) = ∅. Therefore, no rewriting containing q′ is a sound rewriting of q1
with respect to {σ }. This is because the constant c is associated with the existentially
quantified variable Z and thus, after applying the rewriting step, the information about
the constant c occurring in the original query is lost.

Consider now the CQ

q2 : p(B) ← hasCollaborator(B, db, B).

As before, head(σ ) and body(q) unify and γ = {X → B, Y → db, Z → B} is their MGU.
After applying the rewriting step we get again the CQ q′, and 〈a〉 ∈ q′(D). However,
there is no atom of the form hasCollaborator(t, db, t), that is, an atom where the same
term occurs at the first and the last position, meaning that ans(q2, D, {σ }) = ∅. Hence,
no rewriting containing q′ is a sound rewriting of q2 w.r.t. {σ }. This is because one
occurrence of the variable B that is in a self-join, namely that occurs more than once

8Notice that, in general, only a subset of body(q), that unifies with the head of the TGD under consideration,
is replaced during a rewriting step.
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in body(q), is associated with the existentially quantified variable Z and hence, after
applying the rewriting step, the fact that the variable B is in a self-join is lost.

The blind application of the rewriting step may also cause the generation of unsafe
queries, that is, queries where a distinguished variable does not occur in the body.
This may happen if a distinguished variable of the query to be rewritten is associated
with an existentially quantified variable of the TGD under consideration. From the
preceding informal discussion we conclude that the rewriting step can be applied on a
set S ⊆ body(q) using a TGD σ (or simply, σ is applicable to S) if the following hold:
(1) S and head(σ ) unify; and (2) their MGU does not associate the constants, the join
variables, and the distinguished variables of q with the existentially quantified variable
of σ . This is the so-called applicability condition and its formal definition will be given
in the next section. Although the applicability condition is crucial for the soundness
of the final rewriting, it may prevent the generation of queries that are vital for the
completeness of the rewriting. This is illustrated in the following example.

Example 4.3 (Incomplete Rewritings). Consider the set � consisting of the TGDs

σ1 : project(X), inArea(X, Y ) → ∃ZhasCollaborator(Z, Y, X),
σ2 : hasCollaborator(X, Y, Z) → collaborator(X),

and the CQ

q : p(B, C) ← hasCollaborator(A, B, C)︸ ︷︷ ︸
a

, collaborator(A)︸ ︷︷ ︸
b

.

The only viable strategy in this case is to apply σ2 to {b}, since σ1 is not applicable to
{a} due to the join variable A. The obtained query is

q′ : p(B, C) ← hasCollaborator(A, B, C), hasCollaborator(A, E, F),

where E and F are fresh variables. Notice that the variable A remains a join variable
and thus σ1 is not applicable since the applicability condition is violated. However, q′
has the same semantic meaning as

q′′ : p(B, C) ← hasCollaborator(A, B, C),

in which A occurs only once. Since σ1 is applicable to body(q′′) we get the query

q′′′ : p(B, C) ← project(C), inArea(C, B).

The query q′′ is the result of unifying the body atoms of q′, thus this unification step
is critical for generating q′′′. Let us now show that indeed q′′′ is crucial for the com-
pleteness of the final rewriting. Consider the database D = {project(a), inArea(a, b)}.
Clearly, chase(D, �) = D ∪ {hasCollaborator(z, b, a), collaborator(z)}, where z ∈ �N,
hence 〈b, a〉 ∈ ans(q, D, �). Observe that, without the query q′′′, there is no way to have
the tuple 〈b, a〉 in the answer to the final rewriting over D, implying that q′′′ is needed
for the completeness of the rewriting.

From the previous discussion we conclude that, apart from the rewriting step, an
additional unification step is needed to convert some join variables into nonjoin ones.
The purpose of this step, that we call the factorization step, is to satisfy the applicability
condition and thereby guarantee the completeness of the final rewriting. To sum up,
the perfect rewriting of a CQ q w.r.t. a set � of TGDs is computed by exhaustively
applying the two steps discussed earlier, namely rewriting and factorization.
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4.2. The Algorithm XRewrite

We proceed with the formal definition of our rewriting algorithm, called XRewrite.
Before going into the details of the algorithm, we first need to formalize the applicability
condition and the notion of factorizability. We assume without loss of generality that
the variables occurring in queries and those appearing in TGDs constitute two disjoint
sets. Given a CQ q, a variable is called shared in q if it occurs more than once in q.
Notice that the distinguished variables of q are trivially shared since, by definition,
they occur both in body(q) and head(q).

Definition 4.4 (Applicability). Consider a CQ q and a TGD σ . Given a set of atoms
S ⊆ body(q), we say that σ is applicable to S if the following conditions are satisfied:

(1) the set S ∪ {head(σ )} unifies, and
(2) for each a ∈ S, if the term at position π in a is either a constant or a shared variable

in q, then π �= π∃(σ ).

Let us now focus on factorizability that will be the basis of the factorization step.
Recall that the factorization step is necessary in order to convert some shared variables
into nonshared ones, with the aim of satisfying the applicability condition. In general,
this can be achieved by exhaustively unifying all the atoms that unify in the body of a
query. However, some of these unifications do not contribute in any way to satisfying
the applicability condition and, as a result, many superfluous queries are generated.
We illustrate this situation by means of an example.

Example 4.5. Consider the following TGD and query:

σ : s(X) → ∃Y r(X, Y ) q : p(A) ← r(A, B), r(C, B), r(B, E).

Since σ is applicable to {r(B, E)}, we obtain the query

q′ : p(A) ← r(A, B), r(C, B)︸ ︷︷ ︸
S

, s(B).

Due to the shared variable B, σ is not applicable to S. One can proceed with the unifi-
cation of r(A, B) and r(C, B) in order to make B nonshared and satisfy the applicability
condition; clearly, the query

q′′ : p(A) ← r(A, B), s(B)

is obtained. However, the variable B is still shared and there is no way to make it
nonshared. Thus, the unification of r(A, B) and r(C, B) does not contribute to satisfying
the applicability condition and the query q′′ is not needed.

Clearly, the exhaustive unification produces a nonnegligible number of redundant
queries. It is thus necessary to apply a restricted form of factorization that generates
a possibly small number of CQs that are vital for the completeness of the rewriting
algorithm. This corresponds to the identification of all the atoms in the query whose
shared existential variables come from the same atom in the chase, and they can be
unified with no loss of information. Summing up, the key idea underlying our notion of
factorizability is as follows: in order to apply the factorization step, there must exist a
TGD that can be applied to its output.

Definition 4.6 (Factorizability). Consider a CQ q and a TGD σ . Given a set of atoms
S ⊆ body(q), where |S| � 2, we say that S is factorizable w.r.t. σ if the following
conditions are satisfied:

(1) S unifies,
(2) π∃(σ ) �= ε, and
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(3) there exists a variable V �∈ var(body(q)\S) that occurs in every atom of S only at
position π∃(σ ).

Example 4.7. Consider the TGD σ : s(X), r(X, Y ) → ∃Zt(X, Y, Z) and the CQs

q1 : p(A) ← t(a, A, C), t(B, a, C)︸ ︷︷ ︸
S1

,

q2 : p(A) ← s(C), t(A, B, C), t(A, E, C)︸ ︷︷ ︸
S2

,

q3 : p(A) ← t(A, B, C), t(A, C, C)︸ ︷︷ ︸
S3

,

where a ∈ �. The set S1 is factorizable w.r.t. σ since the substitution {A → a, B → a} is a
unifier for S1 and also since C appears in both atoms of S1 only at position π∃(σ ) = t[3].
On the other hand, S2 and S3, although they unify, are not factorizable w.r.t. σ since in
q2 the variable C occurs also outside S2, while in q3 the variable C appears not only at
position π∃(σ ) but also at position t[2].

Let us clarify that the notion of factorizability is incomparable to that of query
minimization [Chandra and Merlin 1977]. Recall that the goal of query minimization
is to construct a query that is equivalent to the original one and at the same time
is minimal. Observe that q1, given in Example 4.7, is already minimal since there is
no endomorphism that can be applied on q1 to make it smaller, but S1 ⊆ body(q1) is
factorizable w.r.t. σ and the obtained query is p(A) ← t(a, a, C), which is not equivalent
to q1. On the other hand, q2 is not minimal since, by applying the endomorphism
{E → B}, we get an equivalent and smaller query, but the factorization step is not
applied.

Having the preceding key notions in place, we are now ready to present the algorithm
XRewrite depicted in Algorithm 1. As said before, the perfect rewriting of a CQ q w.r.t. a
set � of TGDs is computed by exhaustively applying (i.e., until a fixpoint is reached)
the rewriting and the factorization steps. Notice that the CQs that are the result of the
factorization step are nothing else than auxiliary queries critical for the completeness of
the final rewriting, but are not needed in the final rewriting. Thus, during the iterative
procedure, we label the queries with r (respectively, f) in order to keep track of which of
them are generated by the rewriting (respectively, factorization) step. The input query,
although not a result of the rewriting step, is labeled by r since it must be part of the
final rewriting. Moreover, once we exhaustively apply on a CQ the two crucial steps, it
is not necessary to revisit it, since this will lead to redundant queries. Hence, we also
label the queries with e (respectively, u) indicating that a query is already explored
(respectively, unexplored). Let us now describe the two main steps of the algorithm.
In the sequel, consider a triple 〈q, x, y〉, where 〈x, y〉 ∈ {r, f} × {e, u} (this is how we
indicate that q is labeled by x and y) and a TGD σ ∈ �. We assume that q is of the form
p(X) ← ϕ(X, Y).

Rewriting Step. For each S ⊆ body(q) such that σ is applicable to S, the i-th applica-
tion of the rewriting step generates the query q′ = γS,σ i (q[S/body(σ i)]), where σ i is
the TGD obtained from σ by replacing each variable X with Xi, γS,σ i is the MGU for
the set S ∪ {head(σ i)} (which is the identity on the variables that appear in the body
but not in the head of σ i), and q[S/body(σ i)] is obtained from q by replacing S with
body(σ i), namely is the query with p(X) as its head and (ϕ(X, Y)\S) ∪ body(σ i) as its
body. By considering σ i (instead of σ ) we actually rename, using the integer i, the
variables of σ . This renaming step is needed in order to avoid undesirable clutter
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ALGORITHM 1: The algorithm XRewrite

Input: a CQ q over a schema R and a set � of TGDs over R
Output: the perfect rewriting of q w.r.t. �

i := 0;
QREW := {〈q, r, u〉};
repeat

QTEMP := QREW;
foreach 〈q, x, u〉 ∈ QTEMP, where x ∈ {r, f} do

foreach σ ∈ � do
/* rewriting step */
foreach S ⊆ body(q) such that σ is applicable to S do

i := i + 1;
q′ := γS,σ i (q[S/body(σ i)]);
if there is no 〈q′′, r, �〉 ∈ QREW such that q′ � q′′ then

QREW := QREW ∪ {〈q′, r, u〉};
end

end
/* factorization step */
foreach S ⊆ body(q) which is factorizable w.r.t. σ do

q′ := γS(q);
if there is no 〈q′′, �, �〉 ∈ QREW such that q′ � q′′ then

QREW := QREW ∪ {〈q′, f, u〉};
end

end
end
/* query q is now explored */
QREW := (QREW \ {〈q, x, u〉}) ∪ {〈q, x, e〉};

end
until QTEMP = QREW;
QFIN := {q | 〈q, r, e〉 ∈ QREW};
return QFIN

among the variables introduced during different applications of the rewriting step.
Finally, if there is no 〈q′′, r, �〉 ∈ QREW, that is, an (explored or unexplored) query
which is a result of the rewriting step, such that q′ and q′′ are the same (modulo
bijective variable renaming), denoted q′ � q′′, then 〈q′, r, u〉 is added to QREW.

Factorization Step. For each S ⊆ body(q) that is factorizable w.r.t. σ , the factorization
step generates the query q′ = γS(q), where γS is the MGU for S. If there is no
〈q′′, �, �〉 ∈ QREW, namely a query that is a result of the rewriting or the factorization
step, and is explored or unexplored such that q′ � q′′, then 〈q′, f, u〉 is added to QREW.

It is important to say that, if the input set of TGDs is sticky, then both γS,σ i and γS
are defined in such a way that, for each of their mapping V → U , V ∈ var(q) implies
U ∈ var(q); their existence is guaranteed by stickiness (see the proof of Lemma 4.9).
The reason why we employ these MGUs (instead of arbitrary ones) is to ensure a
crucial syntactic property of each query generated during the rewriting process (see
Lemma 4.9), that in turn will allow us to establish the termination of XRewrite under
sticky sets of TGDs. Before we proceed further, let us briefly discuss the relationship
between our approach and the one employed in König et al. [2012] that is based on
the so-called piece unifier. Roughly, a piece-based rewriting step, the building block of
the algorithm in König et al. [2012], simulates a factorization and a rewriting step of
XRewrite. Let us illustrate this via a simple example.
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Example 4.8. Consider the TGD and the CQ

σ : r(X) → ∃Y s(X, Y ) q : p ← s(A, B), s(C, B), s(C, D)︸ ︷︷ ︸
S

, t(A, C).

A pair (S, γ ), where γ is an MGU for the set S ∪ {head(σ )}, is called piece unifier of q
with σ if: (i) the universally quantified variables of σ , denoted var∀(σ ), are mapped by
γ to var∀(σ ); and (ii) each variable of var(S)∩var(body(q)\S) is mapped by γ to var∀(σ ).
Such an MGU is γ = {A → X, B → Y, C → X, D → Y }. The existence of the piece
unifier (S, γ ) implies that S can be rewritten at a single (piece-based) rewriting step
using σ , thus the query q′ : p ← r(X), t(X, X) be obtained.

Now, observe that the set {s(A, B), s(C, B)} ⊆ body(q) is factorizable w.r.t. σ and that
after applying the factorization step we get the query p ← s(A, B), s(C, D), t(A, C).
Then, σ is applicable to {s(A, B), s(C, D)} and, after applying the rewriting step, we get
the query p ← r(A), t(A, A) that coincides (modulo variable renaming) with q′.

4.3. Termination of XRewrite

Let us now establish the termination of XRewrite. We first establish a key syntactic
property of the constructed rewritten query. In the sequel, for notational convenience,
given a CQ q and a set � of TGDs, we denote by q� the rewritten query XRewrite(q, �).

LEMMA 4.9. Consider a CQ q over a schema R, and a set � of TGDs over R. For each
q′ ∈ q� the following hold.

(1) If � ∈ LINEAR, then |body(q)| � |body(q′)|.
(2) If � ∈ STICKY, then every variable of (var(q′)\var(q)) occurs only once in q′.

PROOF. Part (1) follows immediately by definition of linear TGDs. In particular, since
each linear TGD has only one body atom, during the rewriting step we replace a set
of atoms in the body of the CQ under consideration with a single atom. Notice that,
during the factorization step, since we unify atoms, we always decrease the number of
atoms in the body of the CQ.

Part (2) is established by induction on the number of applications of the rewriting
and factorization steps. We denote by qi

� the part of q� obtained after i applications
either of the factorization or the rewriting step. The proof is by induction on i � 0.

Base step. Clearly, q0
� = q, and the claim holds trivially.

Inductive step. In case that qi+1
� = qi

� , where i > 0, the claim follows immediately
by the induction hypothesis. The interesting case is when qi+1

� = qi
� ∪ {p′}, where p′

was obtained from a CQ p ∈ qi
� by applying either the rewriting or the factorization

step. Henceforth, we refer to the variables (not occurring in q) introduced during the
rewriting process as new variables. We identify the following two cases.

Case 1. First, assume that p′ was obtained during the j-th application of the rewriting
step, where j � i + 1, because the TGD σ ∈ � is applicable to a set S ⊆ body(p). Since
by the induction hypothesis each new variable in S occurs only once, we can assume
without loss of generality that, for each mapping V → U of γS,σ j , U is not a new
variable introduced during the first j − 1 applications of the rewriting step. Recall
that, by construction, for each V → U of γS,σ j , V ∈ var(q) implies U ∈ var(q). It is
easy to see that such an MGU always exists. In particular, if γS,σ j does not satisfy
the previous condition, then we can redefine it as μ ◦ γS,σ j , where μ is constructed as
follows: for each V → U of γS,σ j , if V ∈ var(q), U �∈ var(q) and there is no mapping
U → V ′ in μ, then we add to μ the mapping U → V . We proceed by case analysis on
the reason why a new variable may appear in p′. We identify the following two cases.
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(1) A variable V occurs in body(σ j) but not in head(σ j). By construction, V → U ∈
γS,σ j implies U = V . Thus V is a new variable that appears in body(p′). Since
� ∈ STICKY, V occurs in body(σ j) only once, hence V appears in p′ only once.

(2) A new variable is V ∈ var(S), γS,σ j (V ) = U , where U occurs in the body and in the
head of σ j and where there is no assertion U → V ′ in γS,σ j , where V ′ ∈ var(q). By
the induction hypothesis, V occurs only once in p and thus does not occur in p′.
Since U does not appear in the left-hand side of an assertion of γS,σ j , we get that U
is a new variable appearing in body(p′) due to the fact that it occurs in body(σ j) and
head(σ j). Notice that U , after applying SMarking, is marked; thus U occurs only
once in body(σ j) since � ∈ STICKY. This implies that U appears in p′ only once.

Case 2. Now, suppose that p′ was obtained by applying the factorization step. This
implies that there exists a set S ⊆ body(p), where |S| � 2, that unifies, and p′ = γS(p).
Recall that, by construction, for each mapping V → U of γS, V ∈ var(q) implies
U ∈ var(q). The existence of such an MGU is guaranteed since, by the induction
hypothesis, each new variable in S occurs only once. In fact, γS can be defined as the
MGU for S′, where S′ is obtained as follows: if a new variable W occurs in an atom a ∈ S
at position π and there exists a set {b1, . . . , bn}, where n � 1 such that at position π of
each bi a variable Wi ∈ var(q) occurs, then replace W with W1. It is now straightforward
to see, by definition of γS, that each new variable in p′ occurs only once.

We now show that our rewriting algorithm terminates under linear and sticky TGDs.

THEOREM 4.10. Consider a CQ q over a schema R and a set � of TGDs over R. If
� ∈ LINEAR or � ∈ STICKY, then XRewrite(q, �) terminates.

PROOF. Assume first that � ∈ LINEAR. By Lemma 4.9 we get that, for each q′ ∈ q� ,
|body(q)| � |body(q′)|. This implies that each q′ ∈ q� can be equivalently rewritten
as a CQ with at most k = |body(q)| · arity(R) variables. Therefore q� contains (modulo
variable renaming) at most k variables. Since the maximum number of CQs that can be
constructed using k variables and |R| predicates is finite and also since the algorithm
does not drop queries that it has generated, the claim follows.

Suppose now that � ∈ STICKY. Given a CQ p ∈ q� , let p� be the query obtained from
p by replacing each variable of var(p)\var(q) with the symbol �. Since by Lemma 4.9
each variable of var(p)\var(q) occurs only once in p, we get the following: for each
pair of CQs p1 and p2 of q� , if p�

1 = p�
2, then p1 and p2 are the same modulo bijective

variable renaming. Therefore, the maximum number of CQs that can be constructed
during the execution of XRewrite is bounded by the number of different CQs that can be
constructed using terms of T = (terms(q) ∪ {�}) and predicates of R. Since both T and
R are finite and also since the algorithm does not drop queries that it has generated,
we conclude that XRewrite terminates under sticky sets of TGDs.

Clearly, the check that the obtained query is not already present (modulo bijective
variable renaming) each time the rewriting or the factorization step is applied is crucial
in order to guarantee the termination of XRewrite. An alternative way, actually the one
that we employ in the implementation of our algorithm, is to maintain an auxiliary
set of CQs Qcan that stores the generated queries in a canonical form, that is, after
applying a canonical renaming step, and to run the algorithm until a fixpoint of Qcan
is reached. Formally, given a CQ q, assuming that � is the input set of TGDs and R
the underlying schema, a canonical renaming canq : terms(body(q)) → (�q ∪
q), where
�q ⊂ � are the constants occurring in q, and 
q ⊂ �N is such that (
q ∩ var(q)) = ∅,
|
q| = |body(q)|·arity(R) if � ∈ LINEAR, and |
q| = |R|·(|terms(q)|+1)arity(R) ·arity(R) if
� ∈ STICKY, is a one-to-one substitution mapping each constant of �q to itself, and each
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variable of var(q) to the first unused element of 
q; a lexicographic order is assumed
on 
q. It is easy to see that, given two CQs q and p, canq(q) = canp(p) implies that q
and p are the same query (modulo bijective variable renaming).

4.4. The Size of the Rewriting

By exploiting the analysis in the proof of Theorem 4.10, it is easy to establish an upper
bound on the size of the rewriting constructed by XRewrite.

THEOREM 4.11. Consider a CQ q over a schema R and a set � of TGDs over R. The
following hold:

(1) |q�| ∈ O((|R| · (arity(R) · |body(q)|)arity(R))|body(q)|) if � ∈ LINEAR, and
(2) |q�| ∈ 2O(|R|·(arity(R)·|body(q)|)arity(R)) if � ∈ STICKY.

PROOF. Assume first that � ∈ LINEAR. As discussed in the proof of Theorem 4.10, the
number of variables that can appear in q� is bounded by (arity(R) · |body(q)|). Thus the
number of atoms that can appear in q� is at most |R| · (arity(R) · |body(q)|)arity(R). Since
|body(q′)| � |body(q)|, for each q′ ∈ q� , we immediately get that |q�| � (|R| · (arity(R) ·
|body(q)|)arity(R))|body(q)|; part (1) follows. Assume now that � ∈ STICKY. As discussed in
the proof of Theorem 4.10, the number of variables that can appear in q� is bounded
by |terms(q)|+1 � (arity(R) · |body(q)|)+1, hence the number of atoms that can appear
in q� is at most |R| · ((arity(R) · |body(q)|) + 1)arity(R). Since a CQ q′ ∈ q� can have in
its body any subset of these atoms, we conclude that |q�| � 2(|R|·((arity(R)·|body(q)|)+1)arity(R));
part (2) follows.

An interesting question is whether the exponential (respectively, double-exponential)
size of the UCQ rewriting is unavoidable when we consider linear (respectively,
sticky) sets of TGDs. In what follows, we give an affirmative answer to this
question.

THEOREM 4.12. The following hold.

(1) There exists a CQ q over a schema R and a set � ∈ LINEAR over R such that, for
any UCQ rewriting Q of q w.r.t. �, |Q| ∈ .�((|R|)|body(q)|),

(2) There exists a CQ q over a schema R and a set � ∈ STICKY over R such that, for
any UCQ rewriting Q of q w.r.t. �, |Q| ∈ �(2(2arity(R))).

PROOF. For part (1), let R = {p0, . . . , pm} and consider the CQ and the set of TGDs

q : p ← p0(A1), . . . , p0(An) � = {
pi(X) → p0(X)

}
i∈[m] .

It is not difficult to see that any UCQ rewriting of q w.r.t. � must contain a CQ q′ such
that body(q′) ∈ ({pi(A1)}i∈[m] × {pi(A2)}i∈[m] × · · · × {pi(An)}i∈[m]). Since the cardinality of
the aforesaid set is mn = (|R|)|body(q)|, the claim follows.

For part (2), let R = {p0, . . . , pn, s, r} and consider the atomic CQ q : p ← p0(0, . . . , 0),
where p0 is an n-ary predicate, as well as the sticky set � of TGDs

{pi(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn), pi(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)
→ pi(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn)}i∈[n],

{si(X1, . . . , Xn) → pn(X1, . . . , Xn)}i∈[2].

It is easy to verify that any UCQ rewriting of q w.r.t. � must contain a CQ q′ such that
body(q′) ∈ ×t∈{0,1}n{s1(t), s2(t)}, and | ×t∈{0,1}n {s1(t), s2(t)}| = 2(2n) = 2(2arity(R)).
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4.5. Correctness of XRewrite

We now establish the correctness of XRewrite. Towards this aim, two auxiliary technical
lemmas are needed. The first one, which is used for soundness, states that the answer
to the final rewriting is a subset of the answer to the input query. In what follows, let
Xi be the sequence of variables obtained by replacing each variable X of X with Xi.

LEMMA 4.13. Consider a CQ q over a schema R, a database D for R, and a set � of
TGDs over R. It holds that ans(q�, D, �) ⊆ ans(q, D, �).

PROOF. It suffices to show that, for a tuple of constants t, t ∈ ans(q�, D, �) implies
t ∈ ans(q, D, �), or, equivalently, t ∈ q�(chase(D, �)) implies t ∈ q(chase(D, �)). It is
straightforward to see that the factorization step does not affect the soundness of our
algorithm. Thus, we assume without loss of generality that q� is the UCQ constructed
without applying the factorization step. We denote by qi

� the part of q� obtained after
i � 0 applications of the rewriting step. The proof is by induction on i.

Base step. Clearly, q0
� = q, and the claim holds trivially.

Inductive step. Suppose now that t ∈ qi
�(chase(D, �)), for i � 0. This implies that

there exists p ∈ qi
� and a homomorphism h such that h(body(p)) ⊆ chase(D, �) and

h(V) = t, where V are the distinguished variables of p. If p ∈ qi−1
� , then the claim

follows by the induction hypothesis. The interesting case is when p was obtained
during the i-th application of the rewriting step from a CQ p′ ∈ qi−1

� , namely qi
� =

qi−1
� ∪ {p}. By the induction hypothesis, it suffices to show that t ∈ qi−1

� (chase(D, �)).
Clearly, there exists a TGD σ ∈ � of the form ϕ(X, Y) → ∃Zr(X, Z) that is applicable
to a set S ⊆ body(p′) and p is the query γ (p′[S/body(σ i)]); let γ be the MGU for
S ∪ {head(σ i)}. Observe that h(γ (ϕ(Xi, Yi))) ⊆ chase(D, �), hence σ is applicable to
chase(D, �); let μ = h ◦ γ . Thus μ′(r(Xi, Zi)) ∈ chase(D, �), where μ′ ⊇ μ|Xi . We define
the substitution h′ = h ∪ {γ (Zi) → μ′(Zi)}. To establish that h′ is well defined, it
suffices to show that γ (Zi) �∈ � and also that there is no mapping V → U ∈ h such
that γ (Zi) = V . Towards a contradiction, suppose that γ (Zi) is either a constant or
appears in the left-hand side of an assertion of h. It is easy to verify that in this case
there exists an atom a ∈ S such that at position π∃(σ ) in a occurs either a constant
or a variable that is shared in p′. But this contradicts the fact that σ is applicable
to S, hence h′ is well defined. It remains to show that the substitution h′ ◦ γ maps
body(p′) to chase(D, �) and h′(γ (V′)) = t, where V′ are the distinguished variables of p′;
this immediately implies that t ∈ qi−1

� (chase(D, �)). Clearly, γ (body(p′)\S) ⊆ body(p).
Since h(body(p)) ⊆ chase(D, �), we get that h′(γ (body(p′)\S)) ⊆ chase(D, �). Moreover,
h′(γ (S)) = h′(γ (r(Xi, Zi))) = r(h′(γ (Xi)), h′(γ (Zi))) = r(μ(Xi), μ′(Zi)) = μ′(r(Xi, Zi)) ∈
chase(D, �). Finally, since γ (V′) = V and h(V) = t, we get that h′(γ (V′)) = t.

The second auxiliary lemma asserts that the answer to the final rewriting is a subset
of the set of tuples obtained by simply evaluating it over the input database.

LEMMA 4.14. Consider a CQ q over a schema R, a database D for R, and a set � of
TGDs over R. It holds that ans(q�, D, �) ⊆ q�(D).

PROOF. It suffices to show that, for a tuple of constants t, t ∈ ans(q�, D, �) implies
t ∈ q(D), or, equivalently, t ∈ q�(chase(D, �)) implies t ∈ q�(D). We proceed by induction
on the number of applications of the chase step.

Base step. Clearly, chase[0](D, �) = D and the claim trivially holds.
Inductive step. Suppose now that t ∈ q�(chase[i](D, �)), for i � 0. This implies that

there exists p ∈ q� and a homomorphism h such that h(body(p)) ⊆ chase[i](D, �) and
h(V) = t, where V are the distinguished variables of p. If h(body(p)) ⊆ chase[i−1](D, �),
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then the claim follows by the induction hypothesis. The nontrivial case is when the
atom a, obtained during the i-th application of the chase step by applying a TGD
σ : ϕ(X, Y) → ∃Zr(X, Z), belongs to h(body(p)). Clearly, there exists a homomorphism
μ such that μ(ϕ(X, Y)) ⊆ chase[i−1](D, �) and a = μ′(r(X, Y)), where μ′ ⊇ μ|X. By the
induction hypothesis, it suffices to show that t ∈ q�(chase[i−1](D, �)). Before we proceed
further, we need an auxiliary claim. Its proof can be found in electronic Appendix B.2.

CLAIM 4.15. There exists a CQ p′ ∈ q� and a set of atoms S ⊆ body(p′) such that σ
is applicable to S and also there exists a homomorphism λ such that λ(body(p′)\S) ⊆
chase[i−1](D, �), λ(V′) = t, where V′ are the distinguished variables of p′, and λ(S) = a.

The previous claim implies that there exists i � 1 such that during the rewriting
process eventually we will get a CQ p′′ with body(p′′) = γ (body(p′)\S) ∪ γ (ϕ(Xi, Yi)),
where γ is the MGU for S ∪ {head(σ i)}. It remains to show that there exists a homo-
morphism that maps body(p′′) to chase[i−1](D, �) and the distinguished variables V′′ of
p′′ to t. Since λ ∪ μ′ is a well-defined substitution, it is a unifier for S ∪ {head(σ i)}. By
definition of the MGU, there exists a substitution θ such that λ∪μ′ = θ ◦γ . Observe that
θ (body(p′′)) = θ (γ (body(p′)\S)∪γ (ϕ(Xi, Yi))) = (λ∪μ′)(body(p′)\S)∪ (λ∪μ′)(ϕ(Xi, Yi)) =
λ(body(p′)\S)∪μ′(ϕ(Xi, Yi)) ⊆ chase[i−1](D, �). Finally, θ (V′′) = θ (γ (V′)) = (λ∪μ′)(V′) =
λ(V′) = t.

We are now ready to establish the soundness and completeness of XRewrite.

THEOREM 4.16. Consider a CQ q over a schema R, a database D for R, and a set �
of TGDs over R. It holds that q�(D) = ans(q, D, �).

PROOF. Since D ⊆ chase(D, �), by monotonicity of CQs, q�(D) ⊆ q�(chase(D, �)), in
turn implying that q�(D) ⊆ ans(q�, D, �). By Lemma 4.13, we immediately get that
q�(D) ⊆ ans(q, D, �). Conversely, since q ∈ q� , we get that ans(q, D, �) ⊆ ans(q�, D, �).
Lemma 4.14 implies that ans(q, D, �) ⊆ q�(D) and the claim follows.

Let us conclude this section by noticing that XRewrite can treat even more expressive
classes of TGDs than linear and sticky TGDs, namely multilinear [Calı̀ et al. 2012a]
and sticky-join [Calı̀ et al. 2012b] TGDs that guarantee the first-order rewritability of
CQ answering. The goal of multilinearity was the definition of a natural formalism that
is strictly more expressive than DL-LiteR,�, that is, the extended version of DL-LiteR
allowing for concept conjunction [Calvanese et al. 2013b]. Sticky-joiness is the result of
combining linearity and stickiness, with the aim of identifying more expressive classes
of TGDs. For more details, see electronic Appendix B.3.

5. PARALLELIZE THE REWRITING PROCEDURE

An interesting question that comes up is whether the overall time that we need to
compute the final rewriting can be reduced by designing a parallel version of XRewrite
that exploits multicore architectures. In this section, we present some preliminary
ideas and results regarding the parallelization of our algorithm. To the best of our
knowledge, this is the first attempt to design a parallel rewriting algorithm. The key
idea is to decompose the query q into smaller queries q1, . . . , qm, where m � 1, in such
a way that, if a variable V occurs in at least two queries of {q1, . . . , qm}, then each
occurrence of V occurs at a position that may host only constants (in the instance
constructed by the chase procedure). This allows us to independently rewrite each
query qi into Qqi , where i ∈ [m], and then to merge the queries Qq1 , . . . , Qqm in order to
obtain the final rewriting. Notice that the decomposition technique described before is
a new form of query decomposition that, in contrast to traditional methods such as the
ones in Chekuri and Rajaraman [2000] and Gottlob et al. [2002], takes into account a
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given set of TGDs and is engineered to be used for parallelizing our rewriting algorithm.
Instead, the aim of existing techniques is to suggest an efficient strategy for executing
the given query. Let us first give an informal description of our parallel procedure.

5.1. An Informal Description

Consider the following relational schema representing financial information about
companies and their stocks.

stock(id, name, unit price) company(name, country, segment)
listComponent(stock, list) stockPortfolio(company, stock, quantity)
finIndex(name, type, reference market) hasStock(stock, comany)
finInstrument(stock) legalPerson(company).

Let � be the set consisting of the following linear TGDs; for clarity, we use more than
one existentially quantified variable in the rule heads.

σ1 : stockPortfolio(X, Y, Z) → ∃V∃W company(X, V, W)
σ2 : stockPortfolio(X, Y, Z) → ∃V∃W stock(Y, V, W)
σ3 : listComponent(X, Y) → ∃Z∃W finIndex(Y, Z, W)
σ4 : listComponent(X, Y) → ∃Z∃W stock(X, Z, W)
σ5 : stockPortfolio(X, Y, Z) → hasStock(Y, X)
σ6 : hasStock(X, Y) → ∃ZstockPortfolio(Y, X, Z)
σ7 : stock(X, Y, Z) → ∃V∃W stockPortfolio(V, X, W)
σ8 : stock(X, Y, Z) → finInstrument(X)
σ9 : company(X, Y, Z) → legalPerson(X).

The TGDs σ1, σ2, σ3, and σ4 set the “domain” and the “range” of the stockPortfolio and
listComponent relations, respectively. The TGDs σ5 and σ6 assert that stockPortfolio
and hasStock are “inverse relations”, while σ7 expresses that each stock must belong
to a stock portfolio. The TGDs σ8 and σ9 model taxonomic relationships, in particular
that each stock is a financial instrument and each company is a legal person. Consider
also the following conjunctive query q asking for all the triples 〈a, b, c〉, where a is a
financial instrument owned by the company b and listed on c:

p(A, B, C) ← finInstrument(A), stockPortfolio(B, A, D), company(B, E, F),
listComponent(A, C), finIndex(C, G, H).

Recall that our intention is to decompose q into smaller subqueries in such a way
that, if a variable V occurs in at least two such subqueries, then each occurrence of V
occurs at a position that may host only constants (in the instance constructed by the
chase procedure). After a careful inspection of the set �, it is easy to verify that, for
every database D, if q is mapped to chase(D, �) via a homomorphism h, then the only
join variable occurring in q that can be mapped by h to a null value is B. More precisely,
due to σ7 a null value may appear at position stockPortfolio[1], which in turn may be
propagated to position company[1] after applying σ1. These positions are called affected
w.r.t. σ7, intuitively meaning that they can have a null generated by σ7. The fact that
only B appears at an affected position allows us to decompose q into four subqueries
and then independently rewrite each one of them. The result of such a decomposition,
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called existential-join decomposition, is the following:

q1 : p1(A) ← finInstrument(A)
q2 : p2(A, B) ← stockPortfolio(B, A, D), company(B, E, F)
q3 : p3(A, C) ← listComponent(A, C)
q4 : p4(C) ← finIndex(C, G, H).

Notice that, for each subquery qi, the distinguished variables of qi are the shared
variables of q that appear outside body(qi), namely in head(q) or in body(q)\body(qi).
The rewriting of qi w.r.t. �, for each i ∈ [4], is denoted Qqi . The last step is to merge the
queries Qq1 , . . . , Qq4 . This can be done via the reconciliation rule

ρ : p(A, B, C) ← p1(A), p2(A, B), p3(A, C), p4(C),

that intuitively says that the rewriting of q w.r.t. � is obtained by computing the
cartesian product of the queries Qq1 , . . . , Qq4 , while the variables A and C, which occur
in more than one component, have the same semantic meaning, namely that the joins
among different components are preserved. More precisely, the final rewriting of q
w.r.t. � is obtained by unfolding the nonrecursive Datalog query 〈Qq1 ∪· · ·∪ Qq4 ∪{ρ}, p〉.

The UCQ obtained by employing the aforesaid technique and XRewrite(q, �) have
exactly the same size. In other words, the parallelization of the rewriting procedure
does not affect the size of the final rewriting. However, it significantly affects the
execution time of the rewriting algorithm. The execution of XRewrite on q and � takes
194ms, whereas the execution of the parallel version of XRewrite takes 81ms (47ms for
constructing 〈Qq1 ∪ . . . ∪ Qq4 ∪ {ρ}, p〉 and 34ms for unfolding it).

5.2. The Algorithm XRewriteParallel

Let us now formalize the idea discussed earlier. First, we need to define the notion of
affected positions.

Definition 5.1 (Affected Positions). Consider a set � of TGDs over a schema R. An
affected position of R w.r.t. a pair 〈σ,�〉, where σ ∈ �, is defined inductively as follows:

(1) the position π∃(σ ) is affected w.r.t. 〈σ,�〉, and
(2) a position π in the head of a TGD σ ′ ∈ � is affected w.r.t. 〈σ,�〉 if the same variable

appears at π and in the body(σ ′) only at positions affected w.r.t. 〈σ,�〉.
Example 5.2. Consider the set � of TGDs consisting of

σ1 : p(X, Y ), s(Y, Z) → ∃W t(Y, X, W) σ2 : t(X, Y, Z) → ∃W p(W, Z).

It is easy to verify that

〈σ1, �〉 = {t[3], p[2]} 〈σ2, �〉 = {p[1], t[2]}.
Notice that, although the variable Y in body(σ1) occurs at position p[2] ∈ 〈σ1, �〉, t[1]
is not affected w.r.t. 〈σ1, �〉 since Y also occurs at position s[1] �∈ 〈σ1, �〉.

By having the previous auxiliary notion in place, we are now ready to define the key
notion of the existential-join decomposition of a CQ w.r.t. a set of TGDs.

Definition 5.3 (Existential-Join Decomposition). Consider a CQ q over a schema R
and a set � of TGDs over R. An existential-join decomposition of q w.r.t. � is a partition
P of body(q) such that the following holds: if a variable V ∈ var(q) occurs in body(q)
only at positions affected w.r.t. 〈σ,�〉 for some σ ∈ �, then there exists S ∈ P such that
V ∈ var(S) and V �∈ var(P\S). We say that P is an optimal, if there is no S ∈ P such
that (P\S) ∪ {S1, S2}, where {S1, S2} is a partition of S, existential-join decomposition
of q w.r.t. �.
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ALGORITHM 2: The algorithm XRewriteParallel

Input: a CQ q over a schema R and a set � of TGDs over R
Output: the perfect rewriting of q w.r.t. �

/* decomposition step */
〈{q1, . . . , qm}, ρ〉 := decompose(q, �);
/* parallel step */
for q ∈ {q1, . . . , qm} do in parallel

Qq := XRewrite(q, �);
end
/* merging step */
	 := Qq1 ∪ . . . ∪ Qqm ∪ {ρ};
QFIN := unfold(〈	, p〉);
return QFIN

It can be proven that the optimal existential-join decomposition of a CQ w.r.t. a set
of TGDs is unique. We are now ready to describe the parallel version of XRewrite. As
already said, the key idea hinges on the fact that each component of an existential-
join decomposition can be rewritten independently and the final rewriting obtained by
merging the obtained rewritings via a reconciliation (Datalog) rule. Consider a CQ q
over a schema R and a set � of TGDs over R; for notational convenience, we assume
that p(X) is the head atom of q and var(q) = {V1, . . . , Vn}. The parallel version of
XRewrite, called XRewriteParallel and depicted in Algorithm 2, consists of the following
three steps.

Decomposition Step. The optimal existential-join decomposition P of q w.r.t. � is com-
puted; let P = {C1, . . . , Cm}. Then, for each i ∈ [m] we construct the CQ

qi : pi( fi(V1, . . . , Vn)) ← Ci,

where pi is an auxiliary predicate not occurring in R and where fi(V1, . . . , Vn) is
defined as the tuple 〈Vj1 , . . . , Vjk〉, where 1 � k � n, such that: (i) 1 � j1 < · · · < jk � n,
and (ii) for each � ∈ [k], Vj� ∈ var(Ci) ∩ (X∪(var(q)\var(Ci))). Intuitively, fi(V1, . . . , Vn)
is obtained from 〈V1, . . . , Vn〉 by keeping only those variables of var(Ci) that are also
distinguished variables of q, or that occur in a component other than Ci. Moreover,
the reconciliation (Datalog) rule

ρ : p(X) ← p1( f1(V1, . . . , Vn)), . . . , pm( fm(V1, . . . , Vn))

is constructed. The decomposition step is carried out by the decompose function
that accepts as input the query q and the set of TGDs �, then returns as output the
pair 〈{q1, . . . , qm}, ρ〉.

Parallel Step. We construct in m parallel computations the perfect rewriting Qq of
each CQ q ∈ {q1, . . . , qm} w.r.t. � by exploiting the rewriting algorithm XRewrite.

Merging Step. It is not difficult to verify that 〈	, p〉, where 	 = (Qq1 ∪ . . . ∪ Qqm ∪ {ρ}),
is a nonrecursive Datalog query. It is well known that such a query can be unfolded
into a (finite) UCQ; for more details, see, for example, Abiteboul et al. [1995]. The
perfect rewriting of the input CQ q w.r.t. � is the UCQ obtained by unfolding 〈	, p〉,
which is carried out by the unfold function.

It is easy to see that XRewriteParallel terminates under linear and sticky sets of
TGDs. The decomposition step terminates since q and � are finite, the parallel step
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since XRewrite terminates under linear and sticky sets of TGDs, and the merging step
since the unfolding of a finite nonrecursive Datalog query is finite.

THEOREM 5.4. Consider a CQ q over a schema R and a set � of TGDs over R. If
� ∈ LINEAR or � ∈ STICKY, then XRewriteParallel(q, �) terminates.

The soundness and completeness of XRewriteParallel follows by construction. Instead
of giving a formal proof (which is rather long and uninteresting), we intuitively explain
why XRewriteParallel is sound and complete. For brevity, given a CQ q and a set �
of TGDs, we denote by q�

� the rewritten query XRewriteParallel(q, �). It is possible
to show that q�

� and q� are the same (modulo bijective variable renaming), which
immediately implies the soundness and completeness of XRewriteParallel. Let P =
{C1, . . . , Cm} be the optimal existential-join decomposition of q w.r.t. �. Each rewriting
step applied during the execution of XRewriteParallel(q, �) corresponds to a rewriting
step of XRewrite(q, �). This holds since, by construction of each qi : pi( fi(V1, . . . , Vn)) ←
Ci where V1, . . . , Vn are the variables of var(q), a variable V ∈ var(Ci) that is shared in
q is also shared in qi. More precisely, if V is a distinguished variable of q or occurs in a
component of P other than Ci, then it also occurs in head(qi) and thus is shared in qi;
otherwise, if it occurs only in Ci, then it is trivially shared in qi since, by hypothesis,
it occurs more than once in Ci. Conversely, each rewriting step applied during the
execution of XRewrite(q, �) corresponds to a rewriting step of XRewriteParallel(q, �).
Towards a contradiction, assume that the preceding claim does not hold. This implies
that, during the execution of XRewriteParallel(q, �), a valid rewriting step is not applied
due to a missing factorization step. But this implies that a variable occuring in body(q)
only at those positions affected w.r.t. 〈σ,�〉, for some σ ∈ �, appears in more than one
component of P—a contradiction. Notice that the reconciliation rule preserves the joins
among different components of P and the claim follows.

THEOREM 5.5. Consider a CQ q over a schema R, a database for R, and a set � of
TGDs over R. It holds that q�

�(D) = ans(q, D, �).

6. OPTIMIZE THE REWRITING FOR LINEAR TGDS

Linearity of TGDs allows us to effectively identify atoms in the body of a query that
are logically implied (w.r.t. a given set of TGDs) by other atoms in the same query.
By exploiting this fact, we propose a technique, called query elimination, aiming at
optimizing the obtained rewritten query under the class of linear TGDs. As we shall
see in the experimental section, query elimination (which is an additional step during
the execution of XRewrite) reduces: (i) the number of CQs of the perfect rewriting,
(ii) the number of atoms in each query of the rewriting, and (iii) the number of joins to
be executed. Let us first give a motivating example that exposes the key idea underlying
query elimination and also illustrates its impact on the final rewriting.

6.1. A Motivating Example

Consider the set � of linear TGDs and the CQ q given in Section 5.1. The complete
rewriting of q w.r.t. � contains 60 conjunctive queries executing 300 joins. However, by
exploiting the set of TGDs, it is possible to eliminate redundant atoms in the generated
queries and thus reduce the size of the final rewriting. For example, it is possible to elim-
inate from the given query q the atom finInstrument(A) since, due to the existence of the
TGDs σ2 and σ8 in �, if the atom stockPortfolio(B, A, D) is satisfied, then immediately
the atom finInstrument(A) is also satisfied. Notice that, by eliminating a redundant
atom from a query, we also eliminate all those queries generated starting from it dur-
ing the rewriting process. Moreover, due to the TGD σ3, if the atom listComponent(A, C)
in q is satisfied, then the atom finIndex(C, G, H) is also satisfied and therefore can be
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Fig. 4. Propagation graph for Example 6.2.

eliminated. Finally, due to the TGD σ1, if the atom stockPortfolio(B, A, D) is satisfied,
then the atom company(B, E, F) is also satisfied, hence the latter is redundant. The
query that has to be considered as input of the rewriting process is therefore

p(A, B, C) ← stockPortfolio(B, A, D), listComponent(A, C),

thus producing a perfect rewriting containing the following two conjunctive queries
executing only two joins:

p(A, B, C) ← listComponent(A, C), stockPortfolio(B, A, D)
p(A, B, C) ← listComponent(A, C), hasStock(A, B).

It is evident that, by eliminating redundant atoms from a query as described previously,
we reduce the number of CQs of the perfect rewriting, the number of atoms in each
query of the rewriting, and the number of joins to be executed.

6.2. Atom Coverage

Before formalizing the idea described before, let us first introduce some auxiliary tech-
nical notions.

Definition 6.1 (Propagation Graph). Consider a set � of TGDs over a schema R.
The propagation graph of �, denoted PG(�), is a labeled directed multigraph 〈N, E, λ〉,
where N is the node set, E is the edge set, and λ is a labeling function E → �. The node
set is the set of positions of R. If there exists σ ∈ � such that the same variable appears
at position πb in body(σ ) and at position πh in head(σ ), then the edge e = 〈πb, πh〉 belongs
to E with λ(e) = σ ; no other edges belong to E.

The propagation graph of a set of linear TGDs encodes all the possible ways of
propagating a term from one position to another during the chase. More precisely, the
existence of a path from π1 to π2 implies that there may be a way to propagate a term
from π1 to π2 during the construction of the chase. Given a path P = v1 . . . vn where
n > 1, of PG(�) = 〈N, E, λ〉, we say that P is minimal if the following condition is
satisfied: there is no 1 < i < n and 0 < j < i such that vi− j . . . vi = vi . . . vi+ j and
λ(〈vi− j, vi− j+1〉) . . . λ(〈vi−1, vi〉) = λ(〈vi, vi+1〉) . . . λ(〈vi+ j−1, vi+ j〉). The minimality condi-
tion guarantees that cycles occurring in PG(�) are traversed at most once.

Example 6.2. Consider the set � of linear TGDs consisting of

σ1 : p(X, Y ) → ∃Zr(X, Y, Z) σ2 : r(X, Y, c) → s(X, Y, Y ) σ3 : s(X, X, Y ) → p(X, Y ).

The propagation graph of � (without the isolated node r[3]) is depicted in Figure 4.
The path P = v1 . . . v6, where v1v2v3 = v4v5v6 = s[3]p[2]r[2] is minimal. However, the
path P ′ = v1 . . . v9, where v1v2v3 = v4v5v6 = v7v8v9 = s[3]p[2]r[2] is not minimal, since
the minimality condition is violated with i = 4 and j = 3; clearly, v1v2v3v4 = v4v5v6v7 =
s[3]p[2]r[2]s[3] and λ(〈v1, v2〉)λ(〈v2, v3〉)λ(〈v3, v4〉) = λ(〈v4, v5〉)λ(〈v5, v6〉)λ(〈v6, v7〉) =
σ3σ2σ1, which intuitively means that the cycle s[3]p[2]r[2]s[3] occurs in P ′ twice.

Unfortunately, the existence of a path P from π1 to π2 does not guarantee the propa-
gation of a term from π1 to π2. For example, consider the TGDs σ1 : r(X, Y ) → ∃Zt(Y, Z)
and σ2 : t(X, X) → s(X). It is easy to verify that, although in PG({σ1, σ2}) the path
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r[2]t[1]s[1] exists, there is no way to propagate a term from r[2] to s[1] since the atom
obtained by applying σ1 does not trigger σ2. Thus, the existence of such a path P
guarantees the propagation of a term from π1 to π2 providing that, for each pair of con-
secutive edges e = 〈π, π ′〉 and e′ = 〈π ′, π ′′〉 of P, where e and e′ are labeled by the TGDs
σ and σ ′, respectively, the atom obtained during the chase by applying σ triggers σ ′. It
is easy to verify that a natural sufficient condition for the latter is as follows: for each
pair of consecutive edges e and e′ of P that are labeled by σ and σ ′, respectively, there
exists a homomorphism h such that h(body(σ ′)) ⊆ head(σ ); notice that this condition
heavily relies on the linearity of the TGDs. A sequence σ1, . . . , σn of linear TGDs where
n > 1 is called tight if, for each i ∈ [n − 1], there exists a homomorphism hi such that
hi(body(σi+1)) = head(σi); a sequence consisting of a single TGD is trivially tight. Fur-
thermore, such a sequence is compatible to an atom a if there exists a homomorphism
h such that h(body(σ1)) = a. We are now ready to introduce the central notion of atom
coverage. For brevity, given an atom a and a term t, pos(a, t) is the set of positions
at which t occurs in a; for instance, if a = r(X, Y, X), then pos(a, X) = {r[1], r[3]} and
pos(a, Y ) = {r[2]}. Moreover, given a CQ q and an atom a ∈ body(q), let T (q, a) be
the maximal subset of terms(a) that contains only constants occurring in q and vari-
ables shared in q; for example, if q is the CQ p(A) ← r(A, B, c) where c ∈ �, then
T (q, r(A, B, c)) = {A, c}.

Definition 6.3 (Atom Coverage). Consider a CQ q over a schema R and a set � ∈
LINEAR over R. Let a and b be atoms of body(q). We say that a covers b w.r.t. q and �,
written as a ≺q

� b, if the following conditions are satisfied:

(1) T (q, b) ⊆ terms(a), and
(2) there exists a sequence S = σ1, . . . , σm of TGDs of �, for m � 1, such that:

(a) S is tight and compatible to a;
(b) for each t ∈ T (q, b) and π ∈ pos(b, t), there exists a minimal path π1π2 . . . πm+1

in PG(�) such that π1 ∈ pos(a, t), πm+1 = π and λ(〈π j, π j+1〉) = σ j , for each
j ∈ [m].

The cover set of an atom a ∈ body(q) w.r.t. q and �, denoted cover(a, q, �), is the set
{b | b ∈ body(q)\{a} and b ≺q

� a}; when q and � are obvious from the context, we shall
denote the aforesaid set as cover(a).

Intuitively speaking, the first condition of atom coverage ensures that, by removing
b from q we do not lose any constant and also that all the joins between b and the other
atoms of body(q), except a, are preserved. The second condition guarantees that b is
logically implied (w.r.t. �) by a, thus can be safely eliminated. The choice of considering
only minimal paths in condition 2(b) is crucial in order to be able to explicitly construct
the cover set of an atom without considering infinite paths. Notice that, by considering
infinite paths, we compute exactly the same cover sets. More precisely, if a �q

� b denotes
the fact that a covers b w.r.t. q and � if we consider infinite paths in Definition 6.3,
then it is easy to verify that a �q

� b implies a ≺q
� b. In fact, if a �q

� b because of a
nonminimal path P, then we can construct a minimal path P ′ from P, by eliminating
the repeated cycles, which is a witness for the fact that a ≺q

� b.

LEMMA 6.4. Consider a CQ q over a schema R and a set � ∈ LINEAR over R. Suppose
that a ≺q

� b, where {a, b} ⊆ body(q), and q′ is obtained from q by eliminating b. Then,
q′(I) ⊆ q(I), for each instance I that satisfies �.

PROOF. Fix a tuple of constants t. Suppose there exists a homomorphism h such that
h(body(q′)) ⊆ I and h(V) = t, where V are the distinguished variables of q′. We need to
show that there exists a homomorphism ĥ such that ĥ(body(q)) ∈ I and ĥ(V) = t. Let us
first give an auxiliary technical claim; its proof can be found in electronic Appendix C.1.
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CLAIM 6.5. There exists a linear TGD σ over R such that � |= σ , a substitution λ,
and a substitution μ which is the identity on var(body(q′)), such that λ(body(σ )) = a
and λ(head(σ )) = μ(b).

Since a ∈ body(q′), Claim 6.5 implies that h(λ(body(σ ))) ∈ I. Recall that � |= σ
and thus I |= σ . This implies that there exists h′ ⊇ h|X, where X are the variables
that appear both in λ(body(σ )) and λ(head(σ )) such that h′(λ(head(σ ))) ∈ I. Therefore
h′(λ(head(σ ))) = h′(μ(b)). Since μ is the identity on var(body(q′)), h and h′ ◦ μ are
compatible. Consequently, the substitution ρ = h ∪ (h′ ◦ μ) maps body(q) to I and
ρ(V) = h(V) = t. The claim follows with ĥ = ρ.

The preceding technical result provides the logical underpinning for the query elim-
ination technique. More precisely, Lemma 6.4 suggests that, for each CQ q obtained
by applying the rewriting step of XRewrite, those atoms of body(q) that are logically
implied (w.r.t. �) by some other atom of body(q) can be eliminated and the obtained
subquery is equivalent to q w.r.t. query answering.

Example 6.6. Consider the set � consisting of the linear TGDs

σ1 : t(X, Y ) → ∃Zr(X, Y, Z), σ3 : s(X, Y, Z) → t(Z, X),
σ2 : r(X, Y, Z) → ∃W s(Y, W, X), σ4 : t(X, Y ) → s(X, Y, Y ).

Let also q be the CQ

p(A) ← t(A, B)︸ ︷︷ ︸
a

, r(A, B, C)︸ ︷︷ ︸
b

, s(A, B, B)︸ ︷︷ ︸
c

.

By Definition 6.3, cover(a) = {b}, cover(b) = {a} and cover(c) = {a, b}. Thus, we can
either eliminate a, c and get the CQ p(A) ← r(A, B, C) or eliminate b, c and get the CQ
p(A) ← t(A, B). Both queries are equivalent to q (for query answering purposes).

6.3. Unique Elimination Strategy

The outcome of query elimination is not unique, as it heavily depends on the order in
which we consider the atoms of the query under consideration. In the previous example,
the order a, b, c gives the subquery p(A) ← r(A, B, C), while the order b, a, c gives the
subquery p(A) ← t(A, B). Before presenting the optimized version of XRewrite, let us
first discuss which elimination strategy best suits our needs.

ALGORITHM 3: The algorithm eliminate

Input: a CQ q, an elimination strategy S for q, and a set � of linear TGDs
Output: the set of eliminable atoms from body(q) w.r.t. S and �

A := ∅;
foreach i := 1 to n do

a := S[i];
if cover(a, q, �) �= ∅ then

A := A∪ {a};
foreach b ∈ body(q)\A do

cover(b, q, �) := cover(b, q, �)\{a};
end

end
end
return A
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An (atom) elimination strategy for a CQ q is a permutation of its body atoms. By
exploiting the cover set of the atoms of body(q), we associate to each elimination strategy
S for q a subset of body(q), denoted eliminate(q, S, �), namely the set of atoms of
body(q) that can be safely eliminated (according to S) in order to obtain a logically
equivalent query (w.r.t. �) with less atoms in its body. Formally, eliminate(q, S, �)
is computed by applying Algorithm 3; given an elimination strategy S, S[i] is the
i-th element of S. As already observed, given two strategies S1 and S2, in general,
eliminate(q, S1, �) �= eliminate(q, S2, �). The question that comes up concerns the choice
of the elimination strategy. Since our goal is to eliminate as many atoms as possible,
we should choose an elimination strategy that maximizes the number of eliminable
atoms. However, the process of finding such a strategy is computationally expensive.
In particular, given a query with n body atoms, we have to enumerate the n! different
elimination strategies and, for each one of them, compute the set of eliminable atoms.
Interestingly, such an expensive computation can be avoided since, regardless of the
chosen elimination strategy, we always eliminate the same number of atoms. In other
words, the strategy of eliminating atoms from the body of a query is unique (modulo
the number of the eliminable atoms). The proof of this result (that can be found in
electronic Appendix C.2) relies on the fact that the binary relation ≺q

� is transitive.

LEMMA 6.7. Consider a CQ q and a set � ∈ LINEAR. Let S1 and S2 be arbitrary
elimination strategies for q. It holds that |eliminate(q, S1, �)| = |eliminate(q, S2, �)|.

Henceforth, given a CQ q of the form h ← a1, . . . , an, we refer to the atom elimination
strategy for q, as denoted by Sq and we denote by �q�� the CQ obtained from q after
eliminating from body(q) the atoms of eliminate(q, Sq, �).

6.4. Query Elimination

We are now ready to describe the optimized algorithm XRewriteEliminate. During the
execution of XRewrite, after the rewriting and factorization steps, the query elimination
step is applied. XRewriteEliminate is obtained after modifying XRewrite as follows:

We have:

(1) line 2 — QREW := {〈�q��, r, u〉};
(2) line 10 — q′ := �γS,σ i (q[S/body(σ i)])�� ; and
(3) line 17 — q′ := �γS(q)�� .

Since eliminate terminates and XRewriteEliminate generates fewer queries than
XRewrite, the termination of the optimized algorithm follows by Theorem 4.10.

THEOREM 6.8. Consider a CQ q over a schema R and a set � ∈ LINEAR over R. Then,
XRewriteEliminate(q, �) terminates.

The next result establishes the correctness of XRewriteEliminate. For brevity, given a
CQ q and a set � of linear TGDs, the query XRewriteEliminate(q, �) is denoted q�

� .

THEOREM 6.9. Consider a CQ q over a schema R, a database D for R, and a set
� ∈ LINEAR over R. It holds that q�

�(D) = ans(q, D, �).

PROOF. Since D ⊆ chase(D, �), by monotonicity of CQs, q�
�(D) ⊆ q�

�(chase(D, �)).
Thus q�

�(D) ⊆ ans(q�
�, D, �). By giving a proof similar to that of Lemma 4.13 and also

by exploiting Lemma 6.4, we can show that ans(q�
�, D, �) ⊆ ans(q̂, D, �), where q̂ =

�q�� . Since chase(D, �) |= �, Lemma 6.4 implies that q̂(chase(D, �)) ⊆ q(chase(D, �));
hence, ans(q̂, D, �) ⊆ ans(q, D, �), thus implying q�

�(D) ⊆ ans(q, D, �). Conversely,
body(q̂) ⊂ body(q) implies ans(q, D, �) ⊆ ans(q̂, D, �). Since, by construction, q̂ ∈ q�

� ,
we immediately get that ans(q̂, D, �) ⊆ ans(q�

�, D, �). By devising a proof similar to
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that of Lemma 4.14 and also by exploiting Lemma 6.4, we can show that ans(q�
�, D, �) ⊆

q�
�(D). Therefore ans(q, D, �) ⊆ q�

�(D) and the claim follows.

It is important to clarify that the earlier result does not hold if we consider arbitrary
TGDs. This is because Lemma 6.4, which is crucial in the proof of Theorem 6.9, is heav-
ily based on the linearity of TGDs. Notice that the algorithm XRewriteEliminateParallel
can be naturally defined by considering in the parallel step of XRewriteParallel the
algorithm XRewriteEliminate instead of XRewrite.

6.5. The Chase-and-Backchase Approach

The task of finding all the minimal equivalent reformulations of a CQ with respect
to a set of TGDs has been already investigated in databases. The most interesting
approach in this respect is the Chase-and-Backchase (C&B) algorithm [Deutsch et al.
1999]. During the chase phase, the given CQ q is chased using the TGDs of the given
set �, yielding a query qU called universal plan. The backchase phase enumerates all
minimal subqueries of qU that are equivalent to q w.r.t. �; henceforth, we refer to �-
minimal and �-equivalent subqueries. For a subquery qS of qU , to decide whether qS is
�-equivalent to q it suffices to check whether qS ⊆� q, that is, whether qS is contained
in q w.r.t �, which reduces to finding a containment mapping from q to the query
obtained after chasing qS using �. Let us recall that, instead of naively enumerating
all the possible subqueries of qU during the backchase phase, one can employ a bottom-
up approach starting with all subqueries with just one atom, continuing with those
consisting of two atoms, and so on, and stopping as soon as a subquery that is �-
equivalent to q is found. This is possible due to the so-called pruning property, which
says that if a subquery qS of qU is �-equivalent to q, then every subquery of qU that is
a superquery of qS cannot be both �-equivalent to q and �-minimal.

It is obvious that C&B is more general than our query elimination technique. More
precisely, given a CQ q and a set � of linear TGDs, C&B will definitely return the
CQ eliminate(q, Sq, �). Therefore, during the execution of XRewrite, the elimination of
redundant atoms can be done by exploiting the C&B algorithm instead of relying on
our query elimination technique. Unfortunately, C&B suffers two major drawbacks
that make it inappropriate for our purposes. The first is the fact that it works only for
classes of TGDs that guarantee the termination of the chase. Recall that in both phases
of the algorithm we need to chase a query as long as no new atoms can be obtained.
Thus, if we consider, for instance, arbitrary linear TGDs, then the termination of the
procedure is not guaranteed. The second drawback (assuming that we focus on a class
that guarantees the termination of the chase) is the fact that we need to apply the
chase procedure double-exponentially many times (in general), which makes the whole
procedure computationally expensive—recall that the main motivation underlying our
backward-chaining algorithm was precisely the avoidance of the explicit construction
of the chase. Therefore, although the C&B algorithm can be used to identify and elim-
inate redundant query atoms, the query elimination approach is more appropriate for
our purposes, since it works for arbitrary linear TGDs and can effectively identify
redundant atoms without an explicit construction of the chase.

7. IMPLEMENTATION

We implemented XRewrite and its optimizations in Java by extending the IRIS Datalog
engine [Bishop and Fischer 2008]. Throughout this section we will refer to this imple-
mentation as IRIS±. All data used in our evaluation, together with the complete source
code of IRIS±, are publicly available9.

9https://bitbucket.org/giorsi/nyaya/.
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7.1. System Architecture

A high-level overview of the main architectural components of IRIS± and their inter-
connections is shown in Figure 5(a). The input of the system consists of a pair 〈Q, �〉:
Q is a set of CQs to be executed against a (possibly incomplete) relational database D,
while � is an ontology consisting of nonconflicting TGDs and FDs, as well as negative
constraints (NCs)10. The IRIS± parser partitions � into �T (the set of TGDs), �F (the
set of FDs), and �⊥ (the set of NCs). The constraints manager accepts �T and con-
structs (query-independent) support data structures based on �T . In particular, the
cover graph of �T , which is basically the transitive closure of the propagation graph of
�T (see Definition 6.1), is constructed—more details are given in the following section.
The constraints manager accepts also �F and �⊥ and then constructs a set QF and
Q⊥, respectively, of check queries, which are actually unions of CQs that will be used
to verify whether D satisfies �F and D ∪ � satisfies �⊥. The query manager takes as
input the set Q and schedules the CQs of Q for rewriting and execution.

Both input and check queries are handed over to the rewriting engine. More precisely,
given as input a CQ q ∈ Q, the union of CQs Q⊥, and the set of TGDs �T (along with
the cover graph of �T ), the rewriting engine rewrites q and Q⊥ using XRewrite into a
union of CQs Qq and Q⊥, respectively. Then, the SQL-Rewriter accepts as input Qq, QF ,
and Q⊥ and rewrites them into equivalent select-project-join SQL queries SQq, SQF ,
and SQ⊥, respectively, to be executed against D. A nonempty answer to the (rewritten)
check query SQF (respectively, SQ⊥) implies that an FD of �F (respectively, an NC
of �⊥) is violated, that is, D ∪ � is inconsistent. In this case, IRIS± exits with an error
as well as list of violated constraints together with the tuples of D that “witness” the
violation. If for the check queries the answer is the empty set, then IRIS± executes the
rewritten query SQq over D.

Figure 5(b) shows in more detail the architectural structure of the IRIS± rewriting
engine. The main module is the FO-Rewriter that implements XRewrite. The engine
receives as input a CQ q and the set �T along with the cover graph of �T . First, it hands
q and �T over to the query decomposer that decomposes q into components q1, q2, . . . , qk,
according to the procedure described in Section 5, that can be independently rewritten.
The decomposer also computes the reconciliation rule ρ. Each qi, where i ∈ [k], is
then handed over an independent FO-Rewriter that produces the rewriting Qi for
that particular component. Each atom of the reconciliation rule ρ is then unfolded
using the corresponding rewriting Qi. All FO-Rewriters share access to the graph
CG(�T ). Moreover, during the execution of the rewriting procedure, an additional data
structure called query graph is maintained, that actually stores the CQs generated
during the rewriting; more details are given in the following section. Furthermore,
the FO-Rewriters share access to caching facilities that aim at avoiding to recompute
several times the same piece of information, such as the MGU for a set of atoms
that is needed for the execution of the rewriting process (discussed in more detail in
Section 8.2). Notice that the cache manager ensures synchronized access to the caches.

It is worth noting that an indexing structure for TGDs is adopted. More precisely,
TGD-Index is implemented as a map M(K, V ), where a key k ∈ K is a predicate symbol
of the underlying schema and where the value M(k) ∈ V is a set of TGDs of � having
k as head predicate. This allows an FO-Rewriter, during an applicability check, to
consider only those TGDs that may be applicable. This is quite beneficial since, despite
the fact that a single applicability check is computationally easy, the rewriting step
iterates over each TGD σ ∈ � checking applicability of σ to a set of atoms S in the

10As said in Section 4, our techniques apply even if we additionally consider a limited form of functional
dependencies, called nonconflicting, and negative constraints; for details see electronic Appendix B.1.
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Fig. 5. IRIS± architecture components.

query q being rewritten and therefore, on large ontologies, this iteration might result
in an unnecessary waste of time since only a few TGDs may be applicable to S.

7.2. Support Data Structures

As already said, IRIS± makes use of support data structures, namely the query graph
and the cover graph. In what follows, we describe how these data structures are imple-
mented as well as how they are used during the rewriting process.

Query Graph. The query graph stores the queries generated during the rewriting
process. The formal definition follows.

Definition 7.1 (Query Graph). Consider a CQ q over a schema R and set � of TGDs
over R. The query graph of q and � is a labeled directed acyclic graph 〈N, E, λ〉, where
N is the node set, E is the edge set, and λ is a labeling function N → XRewrite(q, �).
An edge 〈v, u〉 occurs in E if there exists σ ∈ � and S ⊆ body(qv), where σ is applicable
to S and qv = λ(v), as well as an integer i � 1, such that λ(u) = γS,σ i (qv[S/body(σ i)]).

In other words, the preceding definition says that λ(u) is obtained during the execu-
tion of XRewrite(q, �) by applying the rewriting step on λ(v). Interestingly, apart from
storing the generated queries, the query graph also keeps track of the provenance of
the queries. This allows us, whenever a generated query is recognized as redundant
because of a query subsumption check (that we are going to discuss in the next section),
to use the edges in the graph to eventually remove its descendants, thus saving similar
checks that are redundant. The query graph is implemented using JGraphT11 that
provides efficient data structures for the representation of graph-like structures and
comes with efficient implementations of algorithms such as reachability.

11http://jgrapht.org.
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Cover Graph. As said, the cover graph of a set � of TGDs is actually the transitive
closure of the propagation graph of �. We denote by �� the Kleene closure of �12,
namely the set of all strings over � of any length n > 0. By abuse of notation, if
PG(�) = 〈N, E, λ〉 and v1 . . . vn is a path in PG(�), then by λ(v1 . . . vn) we denote the
string λ(〈v1, v2〉)λ(〈v2, v3〉) . . . λ(〈vn−1, vn〉) ∈ ��. The formal definition follows.

Definition 7.2 (Cover Graph). Consider a set � of TGDs over a schema R and as-
sume that PG(�) = 〈N, E, λ〉. The cover graph of �, denoted CG(�), is a labeled directed
multigraph 〈N, E′, λ′〉, where E′ ⊇ E and λ′ : E′ → ��. The edge set E′ is defined as
follows: (i) if there exists a minimal path v1 . . . vn, where n > 1, in PG(�) such that the
sequence of TGDs λ(v1 . . . vn) is tight, then in E′ there exists an edge e = 〈v1, vn〉 with
λ′(e) = λ(v1 . . . vn) ; and (ii) no other edges belong to E′.

The cover graph is used to check whether a certain position is reachable from some
other position of the underlying schema. More precisely, it is used to check for the
existence of a tight sequence of TGDs as required by the definition of atom coverage
(see Definition 6.3). Moreover, it is used for the computation of the affected positions
of the underlying schema (see Definition 5.1). Notice that in those cases where query
elimination is not applied, such as when the input set of TGDs is not linear, and thus
we do not need to check for atom coverage, then we can consider only the propagation
graph (and not the cover graph). The cover graph is implemented as a map M(K, V ),
where a key k ∈ K is a pair 〈π, π ′〉 of positions of the underlying schema such that π ′
is reachable from π via a sequence of TGDs and where the value M(k) ∈ V is the set
of all sequences s of TGDs such that π ′ is reachable from π via s. This implementation
of the cover graph proved a better alternative than a traditional graph structure due
to the potentially high number of calls to the reachability procedure; by precomputing
the closure of the propagation graph, reachability can be checked in constant time.

8. EXPERIMENTAL EVALUATION

We are now ready to perform an experimental evaluation of XRewrite. After describing
the experimental setting, we carried out an extensive internal evaluation in order to
better understand the impact of the proposed optimization techniques. Finally, we com-
pare our system with ALASKA, the reference implementation of König et al. [2012], the
only known system supporting ontological query answering under general existential
rules.

8.1. Experimental Setting

Since ontological query answering under existential rules is a relatively recent area of
research, no benchmark is currently available. We therefore resorted to an established
benchmark for DL-based query rewriting systems used, for instance, in Pérez-Urbina
et al. [2010] and König et al. [2012]. The benchmark consists of five ontologies expressed
in the well-known description logic DL-LiteR. Notice that every set of DL-LiteR axioms
can be translated into an equivalent set (with respect to query answering) of linear
TGDs and NCs over a schema consisting of unary and binary predicates; for details,
see Calı̀ et al. [2012a]. A brief description of the ontologies follows.

—VICODI (V) is an ontology of European history developed within the VICODI
project13. It consists of 222 linear TGDs without constraints.

—STOCKEXCHANGE (S) is an ontology of the domain of financial institutions within
the EU. It consists of 53 linear TGDs without constraints.

12By abuse of notation, we consider � as a set of symbols.
13http://www.vicodi.org.
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—UNIVERSITY (U) is a DL-LiteR version of the LUBM benchmark14 developed at
Lehigh University that describes the organizational structure of universities. It con-
sists of 87 linear TGDs without constraints.

—ADOLENA (A) (Abilities and Disabilities OntoLogy for ENhancing Accessibility) was
developed for the South African National Accessibility Portal and describes abilities,
disabilities, and devices. It consists of 154 linear TGDs and 19 NCs.

—The Path5 (P5) ontology is a synthetic ontology encoding graph structures and is used
to generate an exponential blowup of the size of the rewritten queries. It consists of
13 linear TGDs without constraints.

Since XRewrite supports general existential rules, we have complemented the aforesaid
benchmark with two ontologies consisting of linear and sticky sets of TGDs, respec-
tively, that are not expressible using description logics.

—Split-Full (SF) is an ontology designed to test the ability of a rewriting algorithm
to exploit query decomposition. It consists of 60 linear TGDs over a schema with
predicates of arity at most three.

—Clique (CLQ) is an ontology representing k-cliques in a graph where k ∈ [3] and has
been devised to test the ability of rewriting engines to handle sticky sets of TGDs. It
consists of 34 TGDs over a schema with predicates of arity at most four.

Each ontology has an associated set of test queries (see electronic Appendix D.1) either
obtained via an analysis of query logs or manually created. Since XRewrite is provably
sound and complete, we need some metrics for the quality of the rewriting.

—Size. When the target rewriting language is UCQs, the size represents the number
of CQs in the final rewriting. Some existing approaches and systems, such as Orsi
and Pieris [2011], Pérez-Urbina et al. [2010], and Rosati and Almatelli [2010], also
support other languages for the rewriting such as nonrecursive or bounded Datalog.
In this case the size of the rewriting is the number of rules in the Datalog program.
Notice that the fact that Datalog rewritings are syntactically more succinct than
UCQs does not immediately imply that they are preferable from a practical point of
view. One of the reasons is the necessity to resort to Datalog engines or some form
of preprocessing before being able to execute a Datalog rewriting against standard
relational database systems. Other size-related metrics include the number of joins
and the number of atoms, since they are an indication of the effort necessary to
execute the rewriting. Since all disjuncts in the rewriting must be executed, in the
following we always consider the total number of atoms and joins in the rewriting.

—Rewriting time. Assuming that the natural setting of ontological query answering
is a transactional environment, another important metric is the time required to
compute a final (and executable) rewriting once a query is submitted to the system.
In this article, we do not include in this metric the time required for the construction
of the cover graph, that does not depend on the query itself and can be constructed
beforehand. However, we include query-dependent pre- and postprocessing steps
such as query decomposition.

—Memory consumption. This represents the peak memory usage reached during the
rewriting of a given query. This metric always includes the memory consumption
introduced by caches but not that of auxiliary data structures such as the cover
graph.

—Search space. Another typical metric for query rewriting algorithms is the number
of CQs explored and generated during the rewriting [König et al. 2013]. In case of

14http://swat.cse.lehigh.edu/projects/lubm/.
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XRewrite, the explored queries are those labelled with e, whereas the generated ones
are those obtained via a rewriting step (possibly multiple times). Ideally, a rewriting
algorithm should be able to explore and generate only those queries necessary for
the final rewriting; as we shall see, this is not always the case.

The machine used for testing is a Dell Optiplex 9020 with 4 dual-core Intel i7-4770
processors at 3.40GHz (8 cores in total), running Linux Mint v15 (Olivia) x86-64, Kernel
3.8.0-19. The machine is equipped with 32GB of RAM. We used a Java VM 1.7.0-45
provided with 16GB of maximum heap size.

8.2. Caching Mechanism

During the rewriting process, several operations, such as the computation of the MGU
for a set of atoms, are likely to be applied multiple times for the same input. This
might occur either within a single FO-Rewriter, for example, because the same CQ is
generated more than once in different branches of the rewriting procedure, or due to
multiple FO-Rewriters exploring the same CQ in two different branches of the search
space. For this reason, we have analyzed the behavior of XRewrite to identify operations
that might benefit from caching. These operations are the following.

—Query elimination. Given a CQ q and a set � of TGDs, compute the query �q�� .
—MGU computation. Given a set of atoms S, compute the MGU for S.
—Canonical renaming. Given a CQ q, compute the query canq(q).

Caches are implemented as maps M(K, V ), where the nature of keys and values varies
depending on the particular cache; for details, see electronic Appendix D.2.

8.3. Internal Evaluation

The aim of the internal evaluation is to quantify the impact of our optimizations on
the rewriting. In particular, they aim at: (i) reducing the number of redundant queries
in the final rewriting while preserving its completeness, and (ii) intelligently exploring
the rewriting search space, such as by avoiding the exploration of redundant queries.

Query Elimination. The first optimization we consider is query elimination (intro-
duced in Section 6). Query elimination requires linearity of the TGDs, therefore we
exclude the CLQ ontology from the analysis. Table I quantifies the gain produced by
query elimination (QE) against a baseline (BASE), where XRewrite is run without ap-
plying any additional optimization steps (see Section 4.2).

Query elimination provides a substantial advantage in terms of the size of the rewrit-
ing for the ontologies U and S. In particular, for q2 in U and S, all but one atom are
eliminated from the input queries, thus resulting in a 98% reduction in the size of the
rewriting. On the other side, query elimination is ineffective on V and P5. For the ontol-
ogy V, the test queries as well as all the queries generated during the rewriting process
are already “minimal” in the sense that no atoms are eliminated after applying query
elimination. As a natural consequence, query elimination also has a beneficial effect
on the exploration of the rewriting search space, since entire branches of the explo-
ration space are pruned. This also impacts the running time and memory consumption.
Again, a substantial improvement is observed on S and U, both in terms of explored
and generated queries. For ontologies P5 and A we observe a gain in the exploration
and generation of queries, although this does not translate to a substantially smaller
size of the final rewriting. It is worth noting that, even when query elimination is less
effective (i.e., A, P5, and V), the impact of the additional checks on the rewriting time
and memory consumption is negligible.

ACM Transactions on Database Systems, Vol. 39, No. 3, Article 25, Publication date: September 2014.



www.manaraa.com

25:38 G. Gottlob et al.

Table I. Impact of Query Elimination on the Rewriting

Size #Atoms #Joins Explored Generated Time (ms) Memory (MB)
BASE QE BASE QE BASE QE BASE QE BASE QE BASE QE BASE QE

V

q1 15 15 15 15 0 0 15 15 14 14 9 9 4.3 4.3
q2 10 10 30 30 30 30 10 10 9 9 7 7 4.3 6.3
q3 72 72 216 216 144 144 72 72 71 71 44 45 4.7 6.7
q4 185 185 555 555 370 370 185 185 184 184 111 115 5.4 7.4
q5 30 30 210 210 270 270 30 30 29 29 26 28 4.6 6.6

S

q1 6 6 6 6 0 0 6 6 7 7 2 2 4.1 4.1
q2 160 2 480 2 320 0 160 2 244 1 43 2 5.9 8.2
q3 504 4 2,520 8 2,520 4 504 4 823 3 198 8 16.8 8.2
q4 960 4 4,800 8 4,800 4 960 4 1,445 3 363 2 25.3 8.2
q5 3,024 8 21,168 24 27,216 24 3,024 8 4,892 7 1.7s 3 12.6 8.3

U

q1 2 2 4 4 2 2 5 5 4 4 3 3 4.1 6.2
q2 148 1 444 1 296 0 240 1 250 0 73 1 5.8 4.1
q3 224 4 1,344 16 2,016 20 1,008 12 1,007 11 432 7 18.5 8.3
q4 1,628 2 4,884 2 1,628 0 5,000 5 6,094 4 1.6s 3 54.1 8.2
q5 3,009 10 12,036 20 18,054 20 8,154 25 11,970 24 3.2s 8 119.2 8.4

A

q1 402 299 779 573 377 274 782 679 847 725 818 729 7.9 17.0
q2 103 94 256 238 153 144 1,784 1,772 1,783 1,783 1.1s 1.2s 19.1 33.4
q3 104 104 520 520 520 520 4,752 4,752 4,751 4,751 3.2s 3.5s 62.7 97.5
q4 492 456 1,288 1,216 796 760 7,110 6,740 7,110 6,838 3.8s 3.5s 67.8 65.8
q5 624 624 3,120 3,120 3,120 3,120 76,122 69,448 76,121 70,457 52.3s 49.8s 1.1G 981.5

P5

q1 6 6 6 6 0 0 14 14 13 13 1 2 4.1 4.1
q2 10 10 16 16 6 6 77 77 76 80 55 8 4.5 8.6
q3 13 13 29 29 16 16 410 400 409 413 57 52 7.4 11.4
q4 15 15 44 44 29 29 2,275 2,210 2,274 2,273 368 403 30.3 33.5
q5 16 16 60 60 44 44 13,522 13,085 13,521 13,424 3.2s 3.2s 211.7 208.3

SF

q1 1 1 3 3 2 2 1 1 0 0 1 1 0.053 2.1
q2 125 125 375 375 250 250 125 125 124 124 30 33 5.1 7.1
q3 1,000 1,000 3,000 3,000 2,000 2,000 1,000 1,000 999 999 227 237 12.6 14.7
q4 8,000 8,000 24,000 24,000 16,000 16,000 8,000 8,000 7,999 7,999 2s 2.2s 77.2 77.0
q5 27,000 27,000 162,000 162,000 108,000 108,000 27,000 27,000 26,999 26,999 12.4s 12.4s 560.7 561.6

Parallelize the Rewriting. We now discuss how the decomposition-based paralleliza-
tion of the rewriting procedure (Section 5) impacts the rewriting metrics. Differently
from query elimination, parallelization is applicable regardless of the expressive power
of the input ontology. Table II summarizes the results, where PARA denotes XRewrite
with parallelization (and query elimination). The comparison is carried out against
a baseline (BASE) where only query elimination is applied. Since the parallelization
cannot reduce the final size of the rewriting, we report the size of the rewriting only
to complement the results of Table I with the size of the rewriting for CLQ, where
query elimination is not applied. The number of components (Comp), computed for
each query and for each ontology, is also reported. As before, we also give the number
of explored and generated CQs. Along with the overall rewriting time, we also report
the time to rewrite all components (Rew), the time necessary to decompose the query
under consideration (Split), and to unfold the rewritten components (Unfold). As usual,
we also report the impact of the optimization on memory consumption.

An immediate conclusion is that, when the input query is decomposable, the rewriting
search space can often be more efficiently explored. For certain ontologies such as SF
and CLQ, the gain is substantial and also generally reflected into a lower rewriting time
and memory consumption. For other ontologies such as V, even if the input query is
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Table II. Impact of Parallelization on the Rewriting

Size Explored Generated Time (ms) Memory (MB)
Comp BASE PARA BASE PARA BASE PARA BASE PARA Rew Split Unfold BASE PARA

V

q1 1 15 15 15 15 14 14 9 14 14 0 0 4.3 4.3
q2 3 10 10 10 12 9 9 7 4 3 1 0 6.3 6.4
q3 3 72 72 72 28 71 25 45 25 24 1 2 6.7 6.7
q4 3 185 185 185 43 184 40 115 26 26 0 3 7.5 7.4
q5 7 30 30 30 14 29 7 28 16 16 0 2 6.6 6.7

S

q1 1 6 6 6 6 7 7 2 2 2 0 0 4.2 4.2
q2 1 2 2 2 2 1 1 2 2 1 0 0 8.2 8.2
q3 1 4 4 4 4 3 3 8 3 2 0 0 8.2 8.2
q4 2 4 4 4 4 3 2 2 3 2 0 0 8.2 8.2
q5 2 8 8 8 6 7 4 3 4 3 1 0 8.3 8.3

U

q1 2 2 2 5 6 4 4 3 4 3 0 0 6.2 6.2
q2 1 1 1 1 1 0 0 1 1 1 0 0 4.1 4.1
q3 4 4 4 12 9 11 5 7 4 3 1 1 8.3 8.3
q4 1 2 2 5 5 4 4 3 3 2 0 0 8.2 8.2
q5 2 10 10 25 10 24 8 8 5 5 0 0 8.3 8.3

A

q1 1 299 299 679 679 725 725 729 282 281 1 0 17.0 17.0
q2 1 94 94 1,772 1,772 1,783 1,783 1.2s 853 852 1 0 33.4 33.4
q3 3 104 104 4,752 4,754 4,751 4,751 3.5s 2.5s 2.5s 3 7 97.5 49.8
q4 1 456 456 6,740 6,740 6,838 6,838 3.5s 3.5s 3.5s 1 0 65.9 93.9
q5 2 624 624 69,448 69,449 70,457 70,486 49.8s 43.4s 43.4s 5 18 981.5 865.0

P5

q1 1 6 6 14 14 13 13 2 2 1 0 0 4.1 4.1
q2 1 10 10 77 77 80 80 8 9 8 0 0 8.6 8.6
q3 1 13 13 400 400 413 413 52 61 61 0 0 11.4 11.4
q4 1 15 15 2,210 2,210 2,273 2,273 403 400 399 1 0 33.5 33.5
q5 1 16 16 13,085 13,085 13,424 13,424 3.2s 3.1s 3.1s 0 0 208.2 208.6

SF

q1 3 1 1 1 3 0 0 1 3 2 1 1 2.1 6.2
q2 3 125 125 125 15 124 12 33 6 5 0 1 7.1 6.6
q3 3 1,000 1,000 1,000 30 999 27 237 15 14 1 10 14.7 9.1
q4 3 8,000 8,000 8,000 60 7,999 57 2.2s 82 82 0 73 770.4 274.4
q5 6 27,000 27,000 27,000 39 26,999 33 12.4s 472 471 1 464 561.6 121.4

CLQ

q1 1 38 38 38 38 57 57 102 8 8 0 0 4.6 4.6
q2 2 38 38 38 39 54 56 140 15 14 1 1 4.6 4.7
q3 4 152 152 152 44 223 59 864 17 17 0 6 7.5 5.5
q4 5 5,776 5,776 5,776 82 9,871 112 48.3s 317 316 1 304 287.4 87.08

fully decomposable into atomic components, such as q5, the decomposition could result
in a loss of performance due to the overhead introduced by the multithreaded execution
of FO-Rewriters. On the other hand, it is worth noting that this occurs for queries that
can already be rewritten very quickly, even without applying query elimination. The
results on the ontology A deserve further explanation. As can be seen, for both q3 and
q5 the number of explored queries increases. The reason is that, for q3 (respectively, q5),
two (respectively, one) of the computed components do not get rewritten and therefore
count as two (respectively, one) additional explored queries, but no substantial gain is
obtained from such a decomposition. This is not the case without decomposition, since
they would have all be part of a unique query, counting as a single explored query. In
addition, parallelization can potentially prevent applicability of query elimination if
the covered and covering atoms reside in two different components. Another interesting
observation is that the decomposition is more effective when the rewriting search space
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can be partitioned into fairly similar subsets explorable by independently rewriting
each component. This is the case, for instance, for q5 on SF but not for q3 and q5 on
A, where some components do not generate any rewriting. If we consider those tests
where decomposition is more effective, such as SF and CLQ, we observe that most
of the time is spent unfolding the rewritten components into a UCQ. A possible way
of tackling this problem is to keep the rewriting “folded”, namely as a nonrecursive
Datalog rewriting; more details can be found in electronic Appendix D.3.

Query Subsumption. An common way of reducing the size of the rewriting is to
check for queries that are subsumed by some other queries in the rewriting and
eliminate them. Formally, given two CQs q1 and q2, we say that q1 subsumes q2 if there
exists a homomorphism h such that h(body(q1)) ⊆ body(q2) and h(head(q1)) = head(q2).
Let us clarify that such a (query) subsumption check is not explicitly included as
part of XRewrite; it is a well-known technique that can be exploited by any rewriting
algorithm. IRIS± implements query subsumption using three different modes. The
first mode (TAIL) consists of applying an exhaustive subsumption check for each pair
of queries in the final rewriting and by eliminating the subsumed ones together
with all its descendants according to the query graph. The procedure preserves the
subsumee in case it is a descendant of the subsumed query. This mode guarantees a
minimal number of CQs in the final rewriting. The intra-decomposition mode (IDEC)
applies the subsumption check at the end of the rewriting of a single component
obtained after the decomposition of the input query. This mode has the advantage that
the subsumption check is applied on smaller queries and on smaller rewriting sets;
however, it does not guarantee minimality of the final rewriting since a redundant
query may be obtained during the unfolding step. Note that, if the query is not
decomposable, then IDEC coincides with TAIL. The intra-rewriting mode (IREW) applies
the subsumption check every time a new query is generated by a rewriting step.
This mode has the advantage of shrinking the rewriting search space by pruning
redundant CQs as soon as they are generated, but has the disadvantage that it might
prevent completeness. As for IDEC, if a query is decomposable, then IREW does not
guarantee minimality; otherwise, IREW coincides with TAIL.

Table III reports on the impact of the preceding three modes on the final rewriting.
The comparison is carried out against a baseline (BASE) where query elimination and
parallelization are applied. Notice that the number of explored and generated CQs is
reported only for IREW, since it is the only subsumption check mode that has a potential
effect on the exploration of the rewriting search space. The last two groups of columns
report on the effect of the different subsumption check modes on the rewriting time
and memory consumption. The symbol “†” denotes that the rewriting did not terminate
within 15 minutes.

A first interesting observation is that the baseline algorithm already computes a
minimal rewriting in most of the cases, with the exception of queries q1, q2, and q4
on A. Also, the number of explored and generated queries matches those explored and
generated by the intra-rewriting subsumption check for all queries in S, U, SF, and
CLQ. On the other hand, IREW adds a substantial burden in terms of rewriting time,
becoming impractical for q5 on A and P5 where our algorithm does not terminate within
15 minutes from its invocation. Another observation is that, despite the fact that only
TAIL provably guarantees the minimality of the rewriting, both IDEC and IREW produce
a minimal number of CQs for the given input queries and ontologies. Also, TAIL becomes
impractical for complex queries on SF and CLQ, whereas both IDEC and IREW terminate
with timings comparable to the baseline.

In summary, our tests indicate that IDEC provides a good trade-off between the need
for minimization of the rewriting and performance. Also, it seems that the amount of
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Table III. Impact of Subsumption Check on the Rewriting

Size Explored Generated Time (ms) Memory (MB)
BASE TAIL IDEC IREW BASE IREW BASE IREW BASE TAIL IDEC IREW BASE TAIL IDEC IREW

V

q1 15 15 15 15 15 15 14 14 14 12 13 10 4.3 4.3 4.3 4.3
q2 10 10 10 10 12 12 9 9 4 9 7 26 6.4 6.4 6.4 6.4
q3 72 72 72 72 28 28 25 25 25 28 15 24 6.6 6.6 6.6 6.6
q4 185 185 185 185 43 43 40 40 26 75 28 55 7.4 7.4 7.4 7.4
q5 30 30 30 30 14 14 7 7 16 12 11 14 6.7 6.7 6.7 6.7

S

q1 6 6 6 6 6 6 7 7 2 2 3 3 4.2 4.2 4.2 4.2
q2 2 2 2 2 2 2 1 1 2 2 3 2 8.2 8.2 8.2 8.2
q3 4 4 4 4 4 4 3 3 3 3 3 2 8.3 8.3 8.3 8.3
q4 4 4 4 4 4 4 2 2 3 3 4 5 8.3 8.3 8.3 8.3
q5 8 8 8 8 6 6 4 4 4 3 6 5 8.3 8.3 8.3 8.3

U

q1 2 2 2 2 6 6 4 4 4 4 6 5 6.2 6.2 6.2 6.2
q2 1 1 1 1 1 1 0 0 1 1 1 2 4.2 4.2 4.2 4.2
q3 4 4 4 4 9 9 5 5 4 4 3 5 8.3 8.3 8.3 8.3
q4 2 2 2 2 5 5 4 4 3 2 4 3 8.3 8.3 8.3 8.3
q5 10 10 10 10 10 10 8 8 5 3 6 5 8.3 8.3 8.3 8.3

A

q1 299 27 27 27 679 41 725 45 282 771 325 168 17.0 12.0 17.0 8.7
q2 94 50 50 50 1,772 1,431 1,783 1,456 853 1.2s 917 15s 33.5 33.7 33.2 32.3
q3 104 104 104 104 4,754 4,468 4,751 4,467 2.5s 2.8s 2.5s 2m 49.9 50.0 46.3 43.2
q4 456 224 224 224 6,740 3,159 6,838 3,410 3.4s 3.6s 3.4s 1.3m 93.9 111.9 97.5 50.2
q5 624 624 624 624 69,449 32,922 70,486 38,902 43.4s 44.5s 43.2s † 865.1 859.7 863.9 †

P5

q1 6 6 6 6 14 14 13 13 2 2 3 2 4.2 4.2 4.2 4.2
q2 10 10 10 10 77 25 80 47 9 9 11 15 8.6 8.6 8.6 8.6
q3 13 13 13 13 400 60 413 208 61 52 53 303 11.4 11.4 11.4 14.95
q4 15 15 15 15 2210 180 2273 936 400 391 375 11s 33.5 33.5 33.5 124.2
q5 16 16 16 16 13085 725 13424 5188 3s 3.1s 3.3s † 208.6 208.4 208.3 †

SF

q1 1 1 1 1 3 3 0 0 3 30 3 5 6.2 6.2 6.2 6.2
q2 125 125 125 125 15 15 12 12 6 97 11 11 6.6 6.6 6.6 6.6
q3 1,000 1,000 1,000 1,000 30 30 27 27 15 1.5s 23 28 9.1 6.6 9.1 9.1
q4 8,000 8,000 8,000 8,000 60 60 57 57 82 83s 84 89 27.4 83.6 27.4 27.4
q5 27,000 27,000 27,000 27,000 39 39 33 33 472 † 427 415 121.5 384.5 121.5 †

CLQ

q1 38 38 38 38 38 38 57 57 8 41 28 45 4.6 5.1 5.1 5.1
q2 38 38 38 38 39 39 56 56 15 41 31 60 4.7 5.3 5.3 5.3
q3 152 152 152 152 44 44 59 59 17 1.3s 38 56 5.5 17.7 6.0 6.0
q4 5,776 5,776 5,776 5,776 82 82 112 112 317 † 41 426 87.1 † 88.1 88.1

resources necessary to remove redundant queries via TAIL or IREW is not justified by
the gain in size, especially if we consider caching mechanisms at the database level.

8.4. Computing the Support Data Structures

XRewrite relies on a number of data structures, namely query, propagation, and cover
graphs, supporting the rewriting process. A natural question is how large such data
structures can be and how long does it take to compute them. For the query graph the
answer to such questions is straightforward, since its maximum size corresponds to
the number of queries generated by XRewrite when no subsumption check is applied.
Similarly, the time to compute it and the memory consumption roughly correspond to
the rewriting time and the total memory usage of XRewrite.

Differently from the query graph, the propagation and the cover graph depend only
on the input ontology and not on the input query. Table IV reports the characteristics
of both the propagation graph (P-GRAPH) and the cover graph (C-GRAPH) constructed for
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Table IV. Propagation and Cover Graphs

Size (#nodes,#edges) LP Time (ms) Memory
P-GRAPH C-GRAPH C-GRAPH P-GRAPH C-GRAPH P-GRAPH C-GRAPH

V (214,445) (214,1194) 7 4 158 190Kb 4.7Mb
S (41,103) (41,405) 8 1 120 45Kb 4,4Mb
U (86,189) (86,416) 6 1 37 81Kb 4.4Mb
A (135,319) (135,1133) 10 43 708 154Kb 4.7Mb
P5 (15,32) (15,43) 3 0 1 14Kb 4.3Mb
SF (100,195) (100,1,050) 19 1 346 84Kb 4.8Mb

CLQ (11,143) N/A N/A 2 N/A 39Kb N/A

each ontology. In particular, we report on the size of the two structures in terms of the
number of nodes and edges, the time necessary to construct them, and their memory
footprint. For the cover graph, we also report the length of the longest label on an edge
(LP), corresponding to the longest tight sequence of TGDs that we have to consider
during the computation of cover sets. Since query elimination can be applied only to
linear TGDs, for the sticky ontology CLQ no cover graph is computed.

Apart from S and V, in all other cases the time to compute the cover graph is either
negligible or comparable to the time to rewrite a query w.r.t. the corresponding ontology.
For S and V, the reason for the higher cost compared with the time necessary to rewrite
the input queries lies in the fact that these ontologies are relatively simple and most
of the machinery devised for the general case is not needed to efficiently handle these
cases. On the other hand, considering the improvements that these two structures bring
in terms of rewriting size, rewriting time, and memory consumption for the general
case, it is certainly worthwhile to make use of them.

8.5. Comparative Evaluation

Although several DL-based systems exist that can deal with the DL-LiteR ontologies in
our tests, to the best of our knowledge only ALASKA (i.e., the reference implementation
of König et al. [2012]) supports ontological query answering under general TGDs. We
believe that limiting the comparison to these two systems is fair. DL-based systems
leverage specificities of DLs, such as the limitation to unary and binary relations only
and the absence of variable permutations in the axioms, that enable more efficient
rewriting techniques not easily extended to more general languages such as TGDs; in
fact, DL-based systems often resort to case-by-case analysis on the syntactic form of
DL axioms. In addition to the queries provided by the benchmarks, we also generated
492 additional queries using SYGENIA [Imprialou et al. 2012], an automatic query
generation tool for testing the completeness of rewriting-based DL systems. These
queries do not cover the non-DL ontologies SF and CLQ. For space reasons, Table V
limits the results of the evaluation to the benchmark queries. Results for the full
(internal and comparative) evaluation are available online.15

For ALASKA we chose the setting that consistently reported the smallest size of the
rewriting and, in case of a tie, that with lower rewriting time, namely ar-single in
ALASKA terminology. In case of IRIS±, we apply query elimination, parallelization, and
an intra-decomposition subsumption check.

Transient states of the experimental machines can bias running time and memory
consumption values. For a fair comparison, we run both systems 10 times and report
the median of the values to limit bias due to outliers. Also, since code instrumentation
for running time can interfere with memory consumption values and vice versa, 10 runs

15https://bitbucket.org/giorsi/nyaya/src.
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Table V. ALASKA vs. IRIS±

Size Explored Generated Time (ms) Memory (MB)
ALASKA IRIS± ALASKA IRIS± ALASKA IRIS± ALASKA IRIS± S ALASKA IRIS±

V

q1 15 15 15 15 14 14 116 13 � .024 4.3
q2 10 10 10 12 9 9 19 11 × .024 6.4
q3 72 72 72 28 117 25 36 21 � .054 6.7
q4 185 185 185 43 328 40 60 37 � .69 7.4
q5 30 30 30 14 59 7 5 13 × .174 6.7

S

q1 6 6 6 6 9 7 0 2 � .039 4.2
q2 2 2 48 2 288 1 7 2 � .004 8.2
q3 4 4 54 4 686 3 25 3 � .002 8.3
q4 4 4 192 4 1,632 2 56 4 � .005 8.3
q5 8 8 224 6 3,424 4 195 5 � .013 8.3

U

q1 2 2 5 6 4 4 23 6 � .011 6.3
q2 1 1 42 1 148 0 119 2 � .002 4.2
q3 4 4 48 9 260 5 82 5 � .001 8.3
q4 2 2 1,300 5 6,092 4 2.4s 4 � .006 8.3
q5 10 10 100 10 1,430 8 233 5 � .003 8.3

A

q1 27 27 457 679 1,307 725 517 324 � 16 17.0
q2 50 50 1,598 1,772 4,658 4,704 2s 1.21s � .050 17.85
q3 104 104 4,477 4,754 1,3871 4,751 4.5s 2.5s � .697 46.6
q4 224 224 4,611 6,740 15,889 6,838 3.8s 3.5s � .716 97.7
q5 624 624 50,508 69,449 231,899 70,486 12.8m 42.4s � 3.5 863.9

P5

q1 6 6 14 14 13 13 0 2 � .004 4.2
q2 10 10 67 77 130 80 4 9 � .007 8.6
q3 13 13 332 400 1,001 413 74 50 × .010 11.4
q4 15 15 1,647 2,210 7,065 2,273 2.6s 378 � 3.5 33.5
q5 16 16 8,186 13,085 47,608 13,424 2m 3s � .914 208.3

SF

q1 1 1 1 3 0 0 0 3.5 � 1 6.2
q2 125 125 125 15 300 12 10 7 × 122 6.6
q3 1,000 1,000 1,000 30 2,800 27 193 19 � 973 9.1
q4 8,000 8,000 8,000 60 23,600 57 7.1s 93 � 6.4 27.4
q5 27,000 27,000 27,000 39 135,000 33 3.6m 425 � 40.0 121.5

CLQ

q1 38 38 38 38 218 57 23 25 � 37 5.1
q2 38 38 38 39 218 56 65 32 � 41 5.3
q3 152 152 152 44 1,452 59 1.3s 36 � 193 6.0
q4 5,776 5,776 82 82 112 112 † 346 - † 48.8

have been performed only with code instrumented for running time and another 10 with
code instrumented for memory consumption. Moreover, the column (S) shows whether
the difference in running time between ALASKA and IRIS± is statistically significant (�)
or not (×). For a query q, we say that the difference in running time is significant if it is
greater than the maximum standard deviation recorded for q on the two systems, that
is, if |time(q, ALASKA) − time(q, IRIS±)| > max{ f (q, ALASKA), f (q, IRIS±)}, where time(q, s)
is the rewriting time for q on system s and where f (q, s) denotes the standard deviation
recorded for q on s over the 10 runs. As before, the symbol “†” denotes test cases where
the rewriting process either did not terminate within 15 minutes or ran out of memory.
A value of 0 indicates a running time below the millisecond.

A first observation is that both systems return minimal UCQ rewritings on the
given test cases. A second is that query elimination allows IRIS± to perform a better
exploration of the rewriting search space on V, S, and U, where it is more effective,
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whereas ALASKA explores the search space better on A and P5. This is due to the better
normalization of TGDs with multiple heads applied by ALASKA that we are planning to
consider also for IRIS±. On the other hand, on these ontologies, caching allows IRIS± to
perform better than ALASKA since both query elimination and parallelization are rather
ineffective on these ontologies. On SF and CLQ, parallelization provides a fundamental
contribution towards making the rewriting manageable, as the number of explored and
generated queries is drastically reduced. As expected, ALASKA consumes less memory
and delivers better performance than IRIS± on simpler queries.

By extending the comparison to the full set of SYGENIA-generated queries, the
following facts can be observed. All generated queries have length (i.e., number of
atoms) less than 3 and are therefore considerably simpler than those provided by the
benchmark. This is due to the fact that SYGENIA’s goal is to test for completeness
and not meant to stress-test the rewriting engines. On 80% of the test queries, IRIS±
generates a rewriting of the same size as ALASKA, while for the remaining 20%, ALASKA

produces smaller rewritings. This is attributable to the parallelization that prevents
subsumption check across components. By running IRIS± with a TAIL subsumption
check, it can be verified that the outputs of ALASKA and of IRIS± coincide in size for all
queries. In terms of exploration and generation of queries, IRIS± explores and generates
fewer queries than ALASKA in 78% of the cases, whereas ALASKA explores the search
space better in 22% of the cases. This is again due to the parallelization that prevents
atom coverage from identifying redundant atoms across different components.

9. CONCLUSIONS

The problem of designing a practical query rewriting algorithm for arbitrary TGDs
has been investigated. A resolution-based query rewriting algorithm, called XRewrite,
for linear and sticky TGDs has been proposed and several optimization techniques
have been studied. An extensive analysis on the impact of the proposed optimizations
on the rewriting process, as well as a comparison of our system with the only known
system supporting query rewriting under arbitrary TGDs, that is, ALASKA, has also
been performed. In the future, we would like to study in more depth the problem of
parallelizing the rewriting process. In particular, we are planning to investigate more
sophisticated techniques of decomposing the input query into smaller queries that can
be independently rewritten. Also, effective execution of large rewritings in the form of
UCQs as well as Datalog rewritings will be investigated.
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